1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file integrals_1el_potential_prep.cc
@brief Code for 1-electron integrals, preparatory work for
computation of electron-nuclear potential energy matrix V.
@author: Elias Rudberg <em>responsible</em>
*/
#include "integrals_1el_potential_prep.h"
#include "multipole.h"
#include <stdexcept>
SetOfDistrsForV::SetOfDistrsForV() { }
SetOfDistrsForV::SetOfDistrsForV(const SetOfDistrsForV & other) {
distrList = other.distrList;
multipoleList = other.multipoleList;
groupList = other.groupList;
maxMomentVectorNormList = other.maxMomentVectorNormList;
info = other.info;
}
static void copy_data_and_advance_dest_ptr(char** destPtr, const char* srcPtr, size_t nBytes) {
char* p = *destPtr;
memcpy(p, srcPtr, nBytes);
p += nBytes;
*destPtr = p;
}
/** Function needed for Chunks and Tasks usage. */
void SetOfDistrsForV::write_to_buffer ( char * dataBuffer, size_t const bufferSize ) const {
char* p = dataBuffer;
if(bufferSize < get_size())
throw std::runtime_error("Error: bufferSize too small in SetOfDistrsForV::write_to_buffer.");
int nDistrs = distrList.size();
int nGroups = groupList.size();
// nDistrs
copy_data_and_advance_dest_ptr(&p, (const char*)&nDistrs, sizeof(int));
// nGroups
copy_data_and_advance_dest_ptr(&p, (const char*)&nGroups, sizeof(int));
// info
copy_data_and_advance_dest_ptr(&p, (const char*)&info, sizeof(SetOfDistrsForVInfo));
// distrList
copy_data_and_advance_dest_ptr(&p, (const char*)&distrList[0], nDistrs*sizeof(DistributionSpecStructWithIndexes2));
// multipoleList
copy_data_and_advance_dest_ptr(&p, (const char*)&multipoleList[0], nDistrs*sizeof(multipole_struct_small));
// groupList
copy_data_and_advance_dest_ptr(&p, (const char*)&groupList[0], nGroups*sizeof(group_struct));
// maxMomentVectorNormList
copy_data_and_advance_dest_ptr(&p, (const char*) &maxMomentVectorNormList[0], nGroups*sizeof(maxMomentVectorNormStruct));
// DONE!
}
/*
std::vector<DistributionSpecStructWithIndexes2> distrList;
std::vector<multipole_struct_small> multipoleList; // same size as distrList
std::vector<group_struct> groupList;
std::vector<maxMomentVectorNormStruct> maxMomentVectorNormList; // size same as groupList
SetOfDistrsForVInfo info;
*/
/** Function needed for Chunks and Tasks usage. */
size_t SetOfDistrsForV::get_size() const {
int nDistrs = distrList.size();
int nGroups = groupList.size();
return
2 * sizeof(int) +
sizeof(SetOfDistrsForVInfo) +
nDistrs*sizeof(DistributionSpecStructWithIndexes2) +
nDistrs*sizeof(multipole_struct_small) +
nGroups*sizeof(group_struct) +
nGroups*sizeof(maxMomentVectorNormStruct);
}
static void copy_data_and_advance_src_ptr(char* destPtr, const char** srcPtr, size_t nBytes) {
const char* p = *srcPtr;
memcpy(destPtr, p, nBytes);
p += nBytes;
*srcPtr = p;
}
/** Function needed for Chunks and Tasks usage. */
void SetOfDistrsForV::assign_from_buffer ( char const * dataBuffer, size_t const bufferSize) {
if(bufferSize < 2*sizeof(int))
throw std::runtime_error("Error: bufferSize too small in SetOfDistrsForV::assign_from_buffer.");
const char* p = dataBuffer;
// nDistrs
int nDistrs;
copy_data_and_advance_src_ptr((char*)&nDistrs, &p, sizeof(int));
// nGroups
int nGroups;
copy_data_and_advance_src_ptr((char*)&nGroups, &p, sizeof(int));
distrList.resize(nDistrs);
multipoleList.resize(nDistrs);
groupList.resize(nGroups);
maxMomentVectorNormList.resize(nGroups);
assert(bufferSize >= get_size());
// info
copy_data_and_advance_src_ptr((char*)&info, &p, sizeof(SetOfDistrsForVInfo));
// distrList
copy_data_and_advance_src_ptr((char*)&distrList[0], &p, nDistrs*sizeof(DistributionSpecStructWithIndexes2));
// multipoleList
copy_data_and_advance_src_ptr((char*)&multipoleList[0], &p, nDistrs*sizeof(multipole_struct_small));
// groupList
copy_data_and_advance_src_ptr((char*)&groupList[0], &p, nGroups*sizeof(group_struct));
// maxMomentVectorNormList
copy_data_and_advance_src_ptr((char*)&maxMomentVectorNormList[0], &p, nGroups*sizeof(maxMomentVectorNormStruct));
// DONE!
}
void
organize_distrs_for_V(const IntegralInfo & integralInfo,
SetOfDistrsForV & setOfDistrsForV,
const std::vector<DistributionSpecStructWithIndexes2> & inputList,
ergo_real threshold,
ergo_real maxCharge) {
int nDistrs = inputList.size();
setOfDistrsForV.distrList.resize(nDistrs);
for(int i = 0; i < nDistrs; i++)
setOfDistrsForV.distrList[i] = inputList[i];
// Sort list of distrs by x, y, z, exponent.
// The point of this is to group together distrs that have same center and same exponent.
sort_distr_list(&setOfDistrsForV.distrList[0], nDistrs);
// identify groups of distrs that have same center and same exponent.
// Allocate according to worst case, each distr being a separate group.
setOfDistrsForV.groupList.resize(nDistrs);
int ind = 0;
int currGroupInd = 0;
int groupCount = 0;
int maxNDistrsPerGroup = 0;
while(ind < nDistrs) {
ind++;
if(ind < nDistrs) {
if(compare_distrs<DistributionSpecStructWithIndexes2>(&setOfDistrsForV.distrList[ind], &setOfDistrsForV.distrList[currGroupInd]) == 0)
continue;
}
// define new group
setOfDistrsForV.groupList[groupCount].startIndex = currGroupInd;
setOfDistrsForV.groupList[groupCount].count = ind - currGroupInd;
if (setOfDistrsForV.groupList[groupCount].count > maxNDistrsPerGroup)
maxNDistrsPerGroup = setOfDistrsForV.groupList[groupCount].count;
groupCount++;
// start next group
currGroupInd = ind;
}
setOfDistrsForV.groupList.resize(groupCount);
setOfDistrsForV.maxMomentVectorNormList.resize(groupCount);
// Create multipoles for all distrs.
setOfDistrsForV.multipoleList.resize(nDistrs);
memset(&setOfDistrsForV.multipoleList[0], 0, nDistrs*sizeof(multipole_struct_small));
for(int i = 0; i < nDistrs; i++)
compute_multipole_moments(integralInfo, &setOfDistrsForV.distrList[i].distr, &setOfDistrsForV.multipoleList[i]);
// Determine min and max coords for all distrs, to set boundingCubeCenterCoords and boundingCubeWidth.
ergo_real minCoords[3];
ergo_real maxCoords[3];
for(int i = 0; i < nDistrs; i++) {
for(int coordIdx = 0; coordIdx < 3; coordIdx++) {
ergo_real coord = setOfDistrsForV.distrList[i].distr.centerCoords[coordIdx];
if(i == 0 || coord < minCoords[coordIdx])
minCoords[coordIdx] = coord;
if(i == 0 || coord > maxCoords[coordIdx])
maxCoords[coordIdx] = coord;
}
}
ergo_real maxWidth = 0;
for(int coordIdx = 0; coordIdx < 3; coordIdx++) {
ergo_real centerCoord = (minCoords[coordIdx] + maxCoords[coordIdx]) / 2;
setOfDistrsForV.info.boundingCubeCenterCoords[coordIdx] = centerCoord;
ergo_real width = maxCoords[coordIdx] - minCoords[coordIdx];
if(width > maxWidth)
maxWidth = width;
}
setOfDistrsForV.info.boundingCubeWidth = maxWidth;
setOfDistrsForV.info.maxExtentForAll = 0;
// Get maxMomentVectorNorm info for each group
for(int l = 0; l <= MAX_MULTIPOLE_DEGREE_BASIC; l++)
setOfDistrsForV.info.maxMomentVectorNormForAll.maxMomentVectorNormList[l] = 0;
for(int groupIndex = 0; groupIndex < groupCount; groupIndex++) {
int groupStartIdx = setOfDistrsForV.groupList[groupIndex].startIndex;
multipole_struct_small* currMultipoleList = &setOfDistrsForV.multipoleList[groupStartIdx];
int nDistrsCurrGroup = setOfDistrsForV.groupList[groupIndex].count;
int maxNoOfMoments = 0;
int maxDegree = 0;
ergo_real maxExtentForGroup = 0;
for(int l = 0; l <= MAX_MULTIPOLE_DEGREE_BASIC; l++)
setOfDistrsForV.maxMomentVectorNormList[groupIndex].maxMomentVectorNormList[l] = 0;
for(int i = 0; i < nDistrsCurrGroup; i++) {
if(currMultipoleList[i].noOfMoments > maxNoOfMoments)
maxNoOfMoments = currMultipoleList[i].noOfMoments;
if(currMultipoleList[i].degree > maxDegree)
maxDegree = currMultipoleList[i].degree;
const multipole_struct_small* distrMultipole = &currMultipoleList[i];
for(int l = 0; l <= distrMultipole->degree; l++) {
int startIndex = l*l;
int endIndex = (l+1)*(l+1);
ergo_real sum = 0;
for(int A = startIndex; A < endIndex; A++)
sum += distrMultipole->momentList[A]*distrMultipole->momentList[A];
ergo_real subNorm = template_blas_sqrt(sum);
if(subNorm > setOfDistrsForV.maxMomentVectorNormList[groupIndex].maxMomentVectorNormList[l])
setOfDistrsForV.maxMomentVectorNormList[groupIndex].maxMomentVectorNormList[l] = subNorm;
}
// Get extent
// Here we use an extent such that beyond the extent the abs
// value of any distr is smaller than threshold/maxCharge.
ergo_real abscoeff = template_blas_fabs(setOfDistrsForV.distrList[groupStartIdx+i].distr.coeff);
ergo_real exponent = setOfDistrsForV.distrList[groupStartIdx+i].distr.exponent;
ergo_real R2 = -1 * (1/exponent) * template_blas_log(threshold/(abscoeff*maxCharge));
ergo_real extent = 0;
if(R2 > 0) // R2 can become negative, e.g. if abscoeff is very small, in such cases we let extent be zero.
extent = template_blas_sqrt(R2);
if(extent > maxExtentForGroup)
maxExtentForGroup = extent;
} // end for i
setOfDistrsForV.groupList[groupIndex].maxExtent = maxExtentForGroup;
setOfDistrsForV.groupList[groupIndex].maxNoOfMoments = maxNoOfMoments;
setOfDistrsForV.groupList[groupIndex].maxDegree = maxDegree;
if(maxExtentForGroup > setOfDistrsForV.info.maxExtentForAll)
setOfDistrsForV.info.maxExtentForAll = maxExtentForGroup;
// Update maxMomentVectorNormForAll
for(int l = 0; l <= MAX_MULTIPOLE_DEGREE_BASIC; l++) {
ergo_real currValue = setOfDistrsForV.maxMomentVectorNormList[groupIndex].maxMomentVectorNormList[l];
if(currValue > setOfDistrsForV.info.maxMomentVectorNormForAll.maxMomentVectorNormList[l])
setOfDistrsForV.info.maxMomentVectorNormForAll.maxMomentVectorNormList[l] = currValue;
}
} // end for groupIndex
}
|