1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file integrals_2el_J_kernel.cc
\brief Code for computational kernel for computing the Coulomb
matrix J.
@author: Elias Rudberg <em>responsible</em>.
*/
#include "integrals_2el_J_kernel.h"
#include "pi.h"
#include "integrals_hermite.h"
#include "integrals_2el_util_funcs.h"
static void transfer_to_result_J_list(int nBatchs,
const std::vector<batch_struct> & batchList,
const std::vector<basis_func_pair_struct> & basisFuncPairList,
const std::vector<ergo_real> & result_J_list_local,
ergo_real* result_J_list) {
for(int batch_i = 0; batch_i < nBatchs; batch_i++) {
int noOfBasisFuncPairs = batchList[batch_i].noOfBasisFuncPairs;
for(int i = 0; i < noOfBasisFuncPairs; i++) {
int k = batchList[batch_i].basisFuncPairListIndex+i;
int J_list_index = basisFuncPairList[k].pairIndex;
result_J_list[J_list_index] += result_J_list_local[k];
}
}
}
static void transfer_to_resultMatContrib(int nBatchs,
const std::vector<batch_struct> & batchList,
const std::vector<basis_func_pair_struct> & basisFuncPairList,
const ergo_real* result_J_list_local,
ResultMatContrib* resultMatContrib) {
for(int batch_i = 0; batch_i < nBatchs; batch_i++) {
int noOfBasisFuncPairs = batchList[batch_i].noOfBasisFuncPairs;
for(int i = 0; i < noOfBasisFuncPairs; i++) {
int k = batchList[batch_i].basisFuncPairListIndex+i;
int a = basisFuncPairList[k].index_1;
int b = basisFuncPairList[k].index_2;
resultMatContrib->addContrib(a, b, result_J_list_local[k]);
}
}
}
int
get_J_contribs_from_2_interacting_boxes(const IntegralInfo & integralInfo,
ergo_real* result_J_list, // NULL if not used
ResultMatContrib* resultMatContrib, // NULL if not used
const distr_org_struct & distr_org_struct_1,
const distr_org_struct & distr_org_struct_2,
int interactionWithSelf,
ergo_real threshold,
JK_contribs_buffer_struct* bufferStructPtr)
{
const JK::ExchWeights CAM_params_not_used;
const ergo_real twoTimesPiToPow5half = 2 * pitopow52;
ergo_real* summedIntegralList = bufferStructPtr->summedIntegralList;
ergo_real* primitiveIntegralList = bufferStructPtr->primitiveIntegralList;
const std::vector<distr_group_struct> & groupList_1 = distr_org_struct_1.groupList;
const std::vector<distr_group_struct> & groupList_2 = distr_org_struct_2.groupList;
const std::vector<cluster_struct> & clusterList_1 = distr_org_struct_1.clusterList;
const std::vector<cluster_struct> & clusterList_2 = distr_org_struct_2.clusterList;
const std::vector<batch_struct> & batchList_1 = distr_org_struct_1.batchList;
int nBatchs_1 = distr_org_struct_1.batchList.size();
const std::vector<batch_struct> & batchList_2 = distr_org_struct_2.batchList;
int nBatchs_2 = distr_org_struct_2.batchList.size();
const std::vector<basis_func_pair_struct> & basisFuncPairList_1 = distr_org_struct_1.basisFuncPairList;
const std::vector<basis_func_pair_struct> & basisFuncPairList_2 = distr_org_struct_2.basisFuncPairList;
const std::vector<i_j_val_struct> & spMatElementList_1 = distr_org_struct_1.spMatElementList;
const std::vector<int> & spMatCountList_1 = distr_org_struct_1.spMatCountList;
const std::vector<int> & spMatIdxList_1 = distr_org_struct_1.spMatIdxList;
const std::vector<i_j_val_struct> & spMatElementList_2 = distr_org_struct_2.spMatElementList;
const std::vector<int> & spMatCountList_2 = distr_org_struct_2.spMatCountList;
const std::vector<int> & spMatIdxList_2 = distr_org_struct_2.spMatIdxList;
// Prepare local result lists
int result_J_list_local_1_size = distr_org_struct_1.basisFuncPairList.size();
std::vector<ergo_real> result_J_list_local_1(result_J_list_local_1_size);
// Call memset only if nonzero size to avoid problem if -D_GLIBCXX_ASSERTIONS is used
if(result_J_list_local_1_size > 0)
memset(&result_J_list_local_1[0], 0x00, result_J_list_local_1_size*sizeof(ergo_real));
int result_J_list_local_2_size = distr_org_struct_2.basisFuncPairList.size();
std::vector<ergo_real> result_J_list_local_2(result_J_list_local_2_size);
// Call memset only if nonzero size to avoid problem if -D_GLIBCXX_ASSERTIONS is used
if(result_J_list_local_2_size > 0)
memset(&result_J_list_local_2[0], 0x00, result_J_list_local_2_size*sizeof(ergo_real));
for(int batch_i = 0; batch_i < nBatchs_1; batch_i++)
{
int batch_j_start = 0;
if(interactionWithSelf == 1)
batch_j_start = batch_i;
for(int batch_j = batch_j_start; batch_j < nBatchs_2; batch_j++)
{
int noOfBasisFuncPairs_1 = batchList_1[batch_i].noOfBasisFuncPairs;
int noOfBasisFuncPairs_2 = batchList_2[batch_j].noOfBasisFuncPairs;
// set integral list to zero
memset(summedIntegralList, 0, noOfBasisFuncPairs_1*noOfBasisFuncPairs_2*sizeof(ergo_real));
// get largest dmat element
ergo_real maxabsdmatelement = 0;
for(int i = 0; i < noOfBasisFuncPairs_1; i++)
for(int j = 0; j < noOfBasisFuncPairs_2; j++)
{
ergo_real D_ab = basisFuncPairList_1[batchList_1[batch_i].basisFuncPairListIndex+i].dmatElement;
ergo_real D_cd = basisFuncPairList_2[batchList_2[batch_j].basisFuncPairListIndex+j].dmatElement;
ergo_real absval;
absval = template_blas_fabs(D_ab);
if(absval > maxabsdmatelement)
maxabsdmatelement = absval;
absval = template_blas_fabs(D_cd);
if(absval > maxabsdmatelement)
maxabsdmatelement = absval;
} // END FOR i j get largest dmat element
int cluster_i_start = batchList_1[batch_i].clusterStartIndex;
int clusterCount1 = batchList_1[batch_i].noOfClusters;
for(int cluster_i = cluster_i_start; cluster_i < cluster_i_start + clusterCount1; cluster_i++)
{
int cluster_j_start = batchList_2[batch_j].clusterStartIndex;
int clusterCount2 = batchList_2[batch_j].noOfClusters;
int cluterIndexEnd2 = cluster_j_start + clusterCount2;
if(interactionWithSelf == 1 && batch_i == batch_j)
cluster_j_start = cluster_i;
for(int cluster_j = cluster_j_start; cluster_j < cluterIndexEnd2; cluster_j++)
{
// check if we can skip this combination of clusters
if(clusterList_1[cluster_i].maxLimitingFactorForCluster * clusterList_2[cluster_j].maxLimitingFactorForCluster * maxabsdmatelement < threshold)
continue;
int group_i_start = clusterList_1[cluster_i].groupStartIndex;
int group_i_end = group_i_start + clusterList_1[cluster_i].noOfGroups;
int group_j_start = clusterList_2[cluster_j].groupStartIndex;
int group_j_end = group_j_start + clusterList_2[cluster_j].noOfGroups;
int n1max = clusterList_1[cluster_i].nmax;
int n2max = clusterList_2[cluster_j].nmax;
// Now we can precompute things that depend only on exponents
ergo_real alpha_1 = groupList_1[group_i_start].exponent;
ergo_real alpha_2 = groupList_2[group_j_start].exponent;
ergo_real alphasum = alpha_1 + alpha_2;
ergo_real alphaproduct = alpha_1 * alpha_2;
ergo_real alpha_0 = alphaproduct / alphasum;
ergo_real resultPreFactor = twoTimesPiToPow5half / (alphaproduct*template_blas_sqrt(alphasum));
for(int group_i = group_i_start; group_i < group_i_end; group_i++)
{
if(interactionWithSelf == 1 && batch_i == batch_j && cluster_i == cluster_j)
group_j_start = group_i;
for(int group_j = group_j_start; group_j < group_j_end; group_j++)
{
// Only J is considered; we can use maxAbsDmatElementGroup
ergo_real maxabs_1 = groupList_1[group_i].maxAbsDmatElementGroup;
ergo_real maxabs_2 = groupList_2[group_j].maxAbsDmatElementGroup;
if((groupList_1[group_i].maxLimitingFactorGroup * groupList_2[group_j].maxLimitingFactorGroup * maxabs_1 < threshold) &&
(groupList_1[group_i].maxLimitingFactorGroup * groupList_2[group_j].maxLimitingFactorGroup * maxabs_2 < threshold))
continue;
// now we can do all integrals needed for this pair of groups
ergo_real dx = groupList_2[group_j].centerCoords[0] - groupList_1[group_i].centerCoords[0];
ergo_real dy = groupList_2[group_j].centerCoords[1] - groupList_1[group_i].centerCoords[1];
ergo_real dz = groupList_2[group_j].centerCoords[2] - groupList_1[group_i].centerCoords[2];
// now we have dx dy dz alpha0 alpha1 n1max n2max. Get all integrals for this case.
int noOfMonomials_1 = integralInfo.monomial_info.no_of_monomials_list[n1max];
int noOfMonomials_2 = integralInfo.monomial_info.no_of_monomials_list[n2max];
get_related_integrals_hermite(integralInfo,
CAM_params_not_used,
n1max, noOfMonomials_1,
n2max, noOfMonomials_2,
dx, dy, dz, alpha_0,
resultPreFactor,
primitiveIntegralList);
if(interactionWithSelf == 1 && group_j == group_i && batch_i == batch_j && cluster_i == cluster_j) {
do_summedIntegralList_contribs_self(&spMatElementList_1[spMatIdxList_1[group_i]], spMatCountList_1[group_i],
&spMatElementList_2[spMatIdxList_2[group_j]], spMatCountList_2[group_j],
noOfMonomials_1, noOfMonomials_2,
primitiveIntegralList,
noOfBasisFuncPairs_1, noOfBasisFuncPairs_2,
summedIntegralList);
}
else {
do_summedIntegralList_contribs_std(&spMatElementList_1[spMatIdxList_1[group_i]], spMatCountList_1[group_i],
&spMatElementList_2[spMatIdxList_2[group_j]], spMatCountList_2[group_j],
noOfMonomials_1, noOfMonomials_2,
primitiveIntegralList,
noOfBasisFuncPairs_1, noOfBasisFuncPairs_2,
summedIntegralList);
}
} // END FOR group_j
} // END FOR group_i
} // END FOR cluster_j
} // END FOR cluster_i
for(int idx_1 = 0; idx_1 < noOfBasisFuncPairs_1; idx_1++)
for(int idx_2 = 0; idx_2 < noOfBasisFuncPairs_2; idx_2++)
{
int a = basisFuncPairList_1[batchList_1[batch_i].basisFuncPairListIndex+idx_1].index_1;
int b = basisFuncPairList_1[batchList_1[batch_i].basisFuncPairListIndex+idx_1].index_2;
int c = basisFuncPairList_2[batchList_2[batch_j].basisFuncPairListIndex+idx_2].index_1;
int d = basisFuncPairList_2[batchList_2[batch_j].basisFuncPairListIndex+idx_2].index_2;
ergo_real integralValueCurr = summedIntegralList[idx_1*noOfBasisFuncPairs_2 + idx_2];
ergo_real D_ab = basisFuncPairList_1[batchList_1[batch_i].basisFuncPairListIndex+idx_1].dmatElement;
ergo_real D_cd = basisFuncPairList_2[batchList_2[batch_j].basisFuncPairListIndex+idx_2].dmatElement;
int i1 = batchList_1[batch_i].basisFuncPairListIndex+idx_1;
int J_list_index_ab = basisFuncPairList_1[i1].pairIndex;
int i2 = batchList_2[batch_j].basisFuncPairListIndex+idx_2;
int J_list_index_cd = basisFuncPairList_2[i2].pairIndex;
// Multiply integralValueCurr by 2 if ab and cd refer to the same index pair.
// This is done differently depending on whether J_list_index_ab info is available (it may be -1)
// FIXME ELIAS: put this factor of 2 in the if-statements below instead, that should be possible and avoid this complication wuth (J_list_index_ab >= 0) here.
// (The places below where the factor 2 could be added is those places where there is only one contribution to result_J_list instead of two.)
if(J_list_index_ab >= 0) {
if(J_list_index_ab == J_list_index_cd)
integralValueCurr *= 2;
}
else {
if((a == c && b == d) || (a == d && b == c))
integralValueCurr *= 2;
}
if(template_blas_fabs(integralValueCurr)*maxabsdmatelement < threshold)
continue;
// Place results in result_J_list_local_1 and result_J_list_local_2
if(a != b && c != d && (a != c || b != d)) {
result_J_list_local_1[i1] += 2 * D_cd * integralValueCurr;
result_J_list_local_2[i2] += 2 * D_ab * integralValueCurr;
}
else if(a != b && c != d && a == c && b == d) {
result_J_list_local_1[i1] += 2 * D_cd * integralValueCurr;
}
else if(a == b && c != d) {
result_J_list_local_1[i1] += 2 * D_cd * integralValueCurr;
result_J_list_local_2[i2] += 1 * D_ab * integralValueCurr;
}
else if(a != b && c == d) {
result_J_list_local_1[i1] += 1 * D_cd * integralValueCurr;
result_J_list_local_2[i2] += 2 * D_ab * integralValueCurr;
}
else if(a == b && c == d && a != c) {
result_J_list_local_1[i1] += D_cd * integralValueCurr;
result_J_list_local_2[i2] += D_ab * integralValueCurr;
}
else if(a == b && c == d && a == c) {
result_J_list_local_1[i1] += D_cd * integralValueCurr;
}
else {
return -1; // This should never happen
}
} // END FOR idx_1 idx_2
} // END FOR batch_j
} // END FOR batch_i
// Transfer results from local result lists to final result location.
if(result_J_list) {
// Place results in result_J_list
transfer_to_result_J_list(nBatchs_1, batchList_1, basisFuncPairList_1, result_J_list_local_1, result_J_list);
transfer_to_result_J_list(nBatchs_2, batchList_2, basisFuncPairList_2, result_J_list_local_2, result_J_list);
}
else {
// Place results in resultMatContrib
assert(resultMatContrib != NULL);
transfer_to_resultMatContrib(nBatchs_1, batchList_1, basisFuncPairList_1, &result_J_list_local_1[0], resultMatContrib);
transfer_to_resultMatContrib(nBatchs_2, batchList_2, basisFuncPairList_2, &result_J_list_local_2[0], resultMatContrib);
}
return 0;
}
|