File: integrals_2el_J_mm_utils.cc

package info (click to toggle)
ergo 3.8.2-1.1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 17,568 kB
  • sloc: cpp: 94,763; ansic: 17,785; sh: 10,701; makefile: 1,403; yacc: 127; lex: 116; awk: 23
file content (167 lines) | stat: -rw-r--r-- 7,133 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */

/** @file integrals_2el_J_mm_utils.cc

    \brief Utility functions related to multipole method, used in
    construction of the Coulomb matrix J.

    @author: Elias Rudberg <em>responsible</em>.
*/

#include "integrals_2el_J_mm_utils.h"
#include "box_system.h"


/* Returns 0 or 1 (or -1 on error) */
int
check_if_multipoles_can_be_used(const IntegralInfo & integralInfo,
				ergo_real threshold,
				const ergo_real* boxCenterCoords_1,
				const ergo_real* boxCenterCoords_2,
				ergo_real boxWidth,
				const distr_org_struct & org_1,
				const distr_org_mm_struct & org_mm_1,
				const distr_org_struct & org_2,
				const distr_org_mm_struct & org_mm_2) {
  // check if multipoles can be used.
  // start by computing the minimum distance between the boxes.
  // We assume that both boxes have the same width.
  bool sameBox = true;
  ergo_real dxList[3];
  for(int coordIndex = 0; coordIndex< 3; coordIndex++) {
    ergo_real x1 = boxCenterCoords_1[coordIndex];
    ergo_real x2 = boxCenterCoords_2[coordIndex];
    ergo_real dx = template_blas_fabs(x1 - x2);
    ergo_real width = boxWidth;
    if(dx > width)
      dxList[coordIndex] = dx - width;
    else
      dxList[coordIndex] = 0;
    // If boxes 1 and 2 are the same we get dxList[coordIndex]=0, so to detect that case we also check if dx is significant, then we know it is not the same box.
    if(dx > width/2)
      sameBox = false;
  }
  ergo_real sumOfSquares = 0;
  for(int coordIndex = 0; coordIndex< 3; coordIndex++)
    sumOfSquares += dxList[coordIndex] * dxList[coordIndex];
  ergo_real distance = template_blas_sqrt(sumOfSquares);
  ergo_real maxDistanceOutsideBox_1 = org_1.data.maxDistanceOutsideBox;
  ergo_real maxDistanceOutsideBox_2 = org_2.data.maxDistanceOutsideBox;
  int useMultipoleDescription = 0;

  if(sameBox == false && distance >= maxDistanceOutsideBox_1 + maxDistanceOutsideBox_2) {
    // The distance is OK.
    // We also want to check that the multipole degree needed is not too high.
    // For that we need max norms of subvectors for distrs of both branches.
    // First the case with distrs of 1 interacting with multipole of 2
    ergo_real r_1 = get_min_distance_from_point_to_box(boxCenterCoords_1, boxWidth / 2,
						       org_mm_2.data.multipole.centerCoords);
    int degreeNeeded_1 =
      integralInfo.GetMMLimitTable().get_minimum_multipole_degree_needed(r_1,
									 &org_mm_2.data.multipole,
									 MAX_MULTIPOLE_DEGREE_BASIC,
									 org_mm_1.data.maxMomentVectorNormForDistrsList,
									 threshold);
    if(degreeNeeded_1 < 0)
      return -1;
    // Now the case with distrs of 2 interacting with multipole of 1
    ergo_real r_2 = get_min_distance_from_point_to_box(boxCenterCoords_2, boxWidth / 2,
						       org_mm_1.data.multipole.centerCoords);
    int degreeNeeded_2 =
      integralInfo.GetMMLimitTable().get_minimum_multipole_degree_needed(r_2,
									 &org_mm_1.data.multipole,
									 MAX_MULTIPOLE_DEGREE_BASIC,
									 org_mm_2.data.maxMomentVectorNormForDistrsList,
									 threshold);
    if(degreeNeeded_2 < 0)
      return -1;
    // We need some margin compared to MAX_MULTIPOLE_DEGREE, because
    // in some cases the box multipole is alternating between
    // odd/even large/small elements. Therefore we increase
    // degreeNeeded_1 and degreeNeeded_2 by 1 here.
    degreeNeeded_1++;
    degreeNeeded_2++;
    if(degreeNeeded_1 < MAX_MULTIPOLE_DEGREE && degreeNeeded_2 < MAX_MULTIPOLE_DEGREE)
      useMultipoleDescription = 1;
  }

  return useMultipoleDescription;
}


int
create_list_of_multipoles_for_box(const IntegralInfo& integralInfo,
				  const distr_org_struct & org,
				  multipole_struct_small* result_multipoleList) {
  int batchCount = org.batchList.size();
  if(batchCount == 0)
    return 0;
  // create list of multipoles
  const batch_struct* batchList = &org.batchList[0];
  const cluster_struct* clusterList = &org.clusterList[0];
  const distr_group_struct* groupList = &org.groupList[0];
  const minimal_distr_struct* minimalDistrList = &org.minimalDistrList[0];
  int count_temp = 0;
  for(int batchIndex = 0; batchIndex < batchCount; batchIndex++) {
    int clusterCount = batchList[batchIndex].noOfClusters;
    int cluster_start = batchList[batchIndex].clusterStartIndex;
    for(int clusterIndex = cluster_start; clusterIndex < cluster_start + clusterCount; clusterIndex++) {
      int group_start = clusterList[clusterIndex].groupStartIndex;
      int group_end = group_start + clusterList[clusterIndex].noOfGroups;
      for(int groupIndex = group_start; groupIndex < group_end; groupIndex++) {
	const distr_group_struct* currGroup = &groupList[groupIndex];
	int distr_start = currGroup->startIndex;
	int distr_end = distr_start + currGroup->distrCount;
	for(int distrIndex = distr_start; distrIndex < distr_end; distrIndex++) {
	  int monomialIndex = minimalDistrList[distrIndex].monomialIndex;
	  ergo_real coeff = minimalDistrList[distrIndex].coeff;
	  // get monomialInts from monomialIndex
	  DistributionSpecStruct distr;
	  distr.monomialInts[0] = integralInfo.monomial_info.monomial_list[monomialIndex].ix;
	  distr.monomialInts[1] = integralInfo.monomial_info.monomial_list[monomialIndex].iy;
	  distr.monomialInts[2] = integralInfo.monomial_info.monomial_list[monomialIndex].iz;
	  distr.coeff = coeff;
	  distr.exponent = currGroup->exponent;
	  distr.centerCoords[0] = currGroup->centerCoords[0];
	  distr.centerCoords[1] = currGroup->centerCoords[1];
	  distr.centerCoords[2] = currGroup->centerCoords[2];
	  multipole_struct_small multipole;
	  if(compute_multipole_moments(integralInfo, &distr, &multipole) != 0) {
	    do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in compute_multipole_moments");
	    return -1;
	  }
	  result_multipoleList[count_temp] = multipole;
	  count_temp++;
	} // END FOR distrIndex
      } // END FOR groupIndex
    } // END FOR clusterIndex
  } // END FOR batchIndex
  return 0;
}