1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file integrals_2el_boxed.cc
@brief Code for 2-electron integrals, computation of Coulomb (J)
and HF exchange (K) matrices using a single box.
@author: Elias Rudberg <em>responsible</em>
*/
#include <string.h>
#include "integrals_2el_boxed.h"
#include "integrals_2el_utils.h"
#include "organize_distrs.h"
#include "pi.h"
#include "utilities.h"
static const int HUGE_INTEGER_NUMBER = 2000000000;
typedef struct
{
int a, b, c, d;
int poly_ab_index;
int poly_cd_index;
int idx1;
int idx2;
ergo_real densValue;
} abcd_struct;
#define set_abcd_list_item_macro(i,A,B,C,D,v,i1,i2) \
list[i].a = A; list[i].b = B; list[i].c = C; list[i].d = D; list[i].densValue = v; list[i].idx1 = i1; list[i].idx2 = i2;
static int
get_JK_contribs_from_2_interacting_boxes(const BasisInfoStruct & basisInfo,
const IntegralInfo & integralInfo,
int maxNoOfMonomials,
ergo_real* J,
ergo_real* K,
const ergo_real* dens,
const minimal_distr_struct* minimalDistrList_1,
int noOfGroups_1,
const distr_group_struct* groupList_1,
const minimal_distr_struct* minimalDistrList_2,
int noOfGroups_2,
const distr_group_struct* groupList_2,
const cluster_struct* clusterList_1,
int nClusters_1,
const cluster_struct* clusterList_2,
int nClusters_2,
const batch_struct* batchList_1,
int nBatchs_1,
const batch_struct* batchList_2,
int nBatchs_2,
const basis_func_pair_struct* basisFuncPairList_1,
const basis_func_pair_struct* basisFuncPairList_2,
int interactionWithSelf,
ergo_real threshold,
JK_contribs_buffer_struct* bufferStructPtr)
{
int n = basisInfo.noOfBasisFuncs;
const JK::ExchWeights CAM_params_not_used;
const ergo_real twoTimesPiToPow5half = 2 * pitopow52;// = 2 * pow(pi, 2.5);
ergo_real* summedIntegralList = bufferStructPtr->summedIntegralList;
ergo_real* primitiveIntegralList = bufferStructPtr->primitiveIntegralList;
ergo_real* primitiveIntegralList_work = bufferStructPtr->primitiveIntegralList_work;
for(int batch_i = 0; batch_i < nBatchs_1; batch_i++)
{
int batch_j_start = 0;
if(interactionWithSelf == 1)
batch_j_start = batch_i;
for(int batch_j = batch_j_start; batch_j < nBatchs_2; batch_j++)
{
int noOfBasisFuncPairs_1 = batchList_1[batch_i].noOfBasisFuncPairs;
int noOfBasisFuncPairs_2 = batchList_2[batch_j].noOfBasisFuncPairs;
// set integral list to zero
memset(summedIntegralList, 0, noOfBasisFuncPairs_1*noOfBasisFuncPairs_2*sizeof(ergo_real));
// get largest dmat element
ergo_real maxabsdmatelement = 0;
for(int i = 0; i < noOfBasisFuncPairs_1; i++)
for(int j = 0; j < noOfBasisFuncPairs_2; j++)
{
int a = basisFuncPairList_1[batchList_1[batch_i].basisFuncPairListIndex+i].index_1;
int b = basisFuncPairList_1[batchList_1[batch_i].basisFuncPairListIndex+i].index_2;
int c = basisFuncPairList_2[batchList_2[batch_j].basisFuncPairListIndex+j].index_1;
int d = basisFuncPairList_2[batchList_2[batch_j].basisFuncPairListIndex+j].index_2;
ergo_real absval;
if(J != NULL)
{
absval = template_blas_fabs(dens[a*n+b]);
if(absval > maxabsdmatelement)
maxabsdmatelement = absval;
absval = template_blas_fabs(dens[c*n+d]);
if(absval > maxabsdmatelement)
maxabsdmatelement = absval;
}
if(K != NULL)
{
absval = template_blas_fabs(dens[a*n+c]);
if(absval > maxabsdmatelement)
maxabsdmatelement = absval;
absval = template_blas_fabs(dens[a*n+d]);
if(absval > maxabsdmatelement)
maxabsdmatelement = absval;
absval = template_blas_fabs(dens[b*n+c]);
if(absval > maxabsdmatelement)
maxabsdmatelement = absval;
absval = template_blas_fabs(dens[b*n+d]);
if(absval > maxabsdmatelement)
maxabsdmatelement = absval;
}
} // END FOR i j get largest dmat element
int cluster_i_start = batchList_1[batch_i].clusterStartIndex;
int clusterCount1 = batchList_1[batch_i].noOfClusters;
for(int cluster_i = cluster_i_start; cluster_i < cluster_i_start + clusterCount1; cluster_i++)
{
int cluster_j_start = batchList_2[batch_j].clusterStartIndex;
int clusterCount2 = batchList_2[batch_j].noOfClusters;
int cluterIndexEnd2 = cluster_j_start + clusterCount2;
if(interactionWithSelf == 1 && batch_i == batch_j)
cluster_j_start = cluster_i;
for(int cluster_j = cluster_j_start; cluster_j < cluterIndexEnd2; cluster_j++)
{
// check if we can skip this combination of clusters
if(clusterList_1[cluster_i].maxLimitingFactorForCluster * clusterList_2[cluster_j].maxLimitingFactorForCluster * maxabsdmatelement < threshold)
continue;
int group_i_start = clusterList_1[cluster_i].groupStartIndex;
int group_i_end = group_i_start + clusterList_1[cluster_i].noOfGroups;
int group_j_start = clusterList_2[cluster_j].groupStartIndex;
int group_j_end = group_j_start + clusterList_2[cluster_j].noOfGroups;
int n1max = clusterList_1[cluster_i].nmax;
int n2max = clusterList_2[cluster_j].nmax;
// Now we can precompute things that depend only on exponents
ergo_real alpha_1 = groupList_1[group_i_start].exponent;
ergo_real alpha_2 = groupList_2[group_j_start].exponent;
ergo_real alphasum = alpha_1 + alpha_2;
ergo_real alphaproduct = alpha_1 * alpha_2;
ergo_real alpha_0 = alphaproduct / alphasum;
ergo_real resultPreFactor = twoTimesPiToPow5half / (alphaproduct*template_blas_sqrt(alphasum));
for(int group_i = group_i_start; group_i < group_i_end; group_i++)
{
if(interactionWithSelf == 1 && batch_i == batch_j && cluster_i == cluster_j)
group_j_start = group_i;
for(int group_j = group_j_start; group_j < group_j_end; group_j++)
{
if(K == NULL)
{
// Only J is considered; we can use maxAbsDmatElementGroup
ergo_real maxabs_1 = groupList_1[group_i].maxAbsDmatElementGroup;
ergo_real maxabs_2 = groupList_2[group_j].maxAbsDmatElementGroup;
if((groupList_1[group_i].maxLimitingFactorGroup * groupList_2[group_j].maxLimitingFactorGroup * maxabs_1 < threshold) &&
(groupList_1[group_i].maxLimitingFactorGroup * groupList_2[group_j].maxLimitingFactorGroup * maxabs_2 < threshold))
continue;
}
else
{
if(groupList_1[group_i].maxLimitingFactorGroup * groupList_2[group_j].maxLimitingFactorGroup * maxabsdmatelement < threshold)
continue;
}
// now we can do all integrals needed for this pair of groups
ergo_real dx = groupList_2[group_j].centerCoords[0] - groupList_1[group_i].centerCoords[0];
ergo_real dy = groupList_2[group_j].centerCoords[1] - groupList_1[group_i].centerCoords[1];
ergo_real dz = groupList_2[group_j].centerCoords[2] - groupList_1[group_i].centerCoords[2];
// now we have dx dy dz alpha0 alpha1 n1max n2max. Get all integrals for this case.
int noOfMonomials_1 = integralInfo.monomial_info.no_of_monomials_list[n1max];
int noOfMonomials_2 = integralInfo.monomial_info.no_of_monomials_list[n2max];
if(get_related_integrals_h(integralInfo,
CAM_params_not_used,
n1max, noOfMonomials_1,
n2max, noOfMonomials_2,
dx, dy, dz, alpha_1, alpha_2, alpha_0,
primitiveIntegralList,
primitiveIntegralList_work,
resultPreFactor
) != 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in get_related_integrals");
return -1;
}
int i_start = groupList_1[group_i].startIndex;
int i_end = i_start + groupList_1[group_i].distrCount;
for(int i = i_start; i < i_end; i++)
{
int idx_1 = minimalDistrList_1[i].basisFuncPairIndex;
int monomialIndex_1 = minimalDistrList_1[i].monomialIndex;
int j_start = groupList_2[group_j].startIndex;
int j_end = j_start + groupList_2[group_j].distrCount;
if(interactionWithSelf == 1 && group_j == group_i && batch_i == batch_j && cluster_i == cluster_j)
{
// take care of case i = j separately
ergo_real integralValue = primitiveIntegralList[monomialIndex_1*noOfMonomials_2+monomialIndex_1];
ergo_real integralValueCurr = minimalDistrList_1[i].coeff * minimalDistrList_1[i].coeff * integralValue;
integralValueCurr *= 0.5;
summedIntegralList[idx_1*noOfBasisFuncPairs_2 + idx_1] += integralValueCurr;
j_start = i+1;
}
for(int j = j_start; j < j_end; j++)
{
int idx_2 = minimalDistrList_2[j].basisFuncPairIndex;
int monomialIndex_2 = minimalDistrList_2[j].monomialIndex;
ergo_real integralValue = primitiveIntegralList[monomialIndex_1*noOfMonomials_2+monomialIndex_2];
ergo_real integralValueCurr = minimalDistrList_1[i].coeff * minimalDistrList_2[j].coeff * integralValue;
summedIntegralList[idx_1*noOfBasisFuncPairs_2 + idx_2] += integralValueCurr;
} // END FOR j
} // END FOR i
} // END FOR group_j
} // END FOR group_i
} // END FOR cluster_j
} // END FOR cluster_i
for(int idx_1 = 0; idx_1 < noOfBasisFuncPairs_1; idx_1++)
for(int idx_2 = 0; idx_2 < noOfBasisFuncPairs_2; idx_2++)
{
int a = basisFuncPairList_1[batchList_1[batch_i].basisFuncPairListIndex+idx_1].index_1;
int b = basisFuncPairList_1[batchList_1[batch_i].basisFuncPairListIndex+idx_1].index_2;
int c = basisFuncPairList_2[batchList_2[batch_j].basisFuncPairListIndex+idx_2].index_1;
int d = basisFuncPairList_2[batchList_2[batch_j].basisFuncPairListIndex+idx_2].index_2;
ergo_real integralValueCurr = summedIntegralList[idx_1*noOfBasisFuncPairs_2 + idx_2];
if(a == c && b == d)
integralValueCurr *= 2;
if(template_blas_fabs(integralValueCurr)*maxabsdmatelement < threshold)
continue;
if(a != b && c != d && a != c && a != d && b != c && b != d)
{
if(J != NULL)
{
J[a*n+b] += 2 * dens[c*n+d] * integralValueCurr;
J[c*n+d] += 2 * dens[a*n+b] * integralValueCurr;
}
if(K != NULL)
{
if(d >= a)
K[a*n+d] += -0.5 * dens[b*n+c] * integralValueCurr;
else
K[d*n+a] += -0.5 * dens[b*n+c] * integralValueCurr;
if(c >= a)
K[a*n+c] += -0.5 * dens[b*n+d] * integralValueCurr;
else
K[c*n+a] += -0.5 * dens[b*n+d] * integralValueCurr;
if(c >= b)
K[b*n+c] += -0.5 * dens[a*n+d] * integralValueCurr;
else
K[c*n+b] += -0.5 * dens[a*n+d] * integralValueCurr;
if(d >= b)
K[b*n+d] += -0.5 * dens[c*n+a] * integralValueCurr;
else
K[d*n+b] += -0.5 * dens[c*n+a] * integralValueCurr;
}
}
else
{
abcd_struct list[8];
/* determine unique configurations */
set_abcd_list_item_macro(0, a, b, c, d, 0, 0, 0);
set_abcd_list_item_macro(1, a, b, d, c, 0, 0, 0);
set_abcd_list_item_macro(2, b, a, c, d, 0, 0, 0);
set_abcd_list_item_macro(3, b, a, d, c, 0, 0, 0);
set_abcd_list_item_macro(4, c, d, a, b, 0, 0, 0);
set_abcd_list_item_macro(5, d, c, a, b, 0, 0, 0);
set_abcd_list_item_macro(6, c, d, b, a, 0, 0, 0);
set_abcd_list_item_macro(7, d, c, b, a, 0, 0, 0);
int ccc = 0;
for(int ii = 0; ii < 8; ii++)
{
abcd_struct* abcd = &list[ii];
int aa, bb, cc, dd;
/* check if this is a new unique configuration */
int unique = 1;
for(int jj = 0; jj < ii; jj++)
{
if(abcd->a == list[jj].a &&
abcd->b == list[jj].b &&
abcd->c == list[jj].c &&
abcd->d == list[jj].d)
unique = 0;
}
if(unique == 0)
continue;
/* now we know that this configuration is unique. */
aa = abcd->a;
bb = abcd->b;
cc = abcd->c;
dd = abcd->d;
ccc++;
/* add contribution to coulomb matrix */
if(bb >= aa && J != NULL)
J[aa*n+bb] += dens[cc*n+dd] * integralValueCurr;
if(dd >= aa && K != NULL)
K[aa*n+dd] += -0.5 * dens[bb*n+cc] * integralValueCurr;
} /* END FOR ii go through 8 configurations */
}
} // END FOR idx_1 idx_2
} // END FOR batch_j
} // END FOR batch_i
return 0;
}
typedef struct
{
int id;
ergo_real x[3];
} point_3d_struct;
int
compute_JK_single_box(const BasisInfoStruct & basisInfo,
const IntegralInfo & integralInfo,
ergo_real* J,
ergo_real* K,
const ergo_real* dens,
ergo_real threshold)
{
Util::TimeMeter timeMeterTot;
Util::TimeMeter timeMeterDistrList;
int n = basisInfo.noOfBasisFuncs;
ergo_real maxDensityMatrixElement = get_max_abs_vector_element(n*n, dens);
do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS,
"entering compute_JK_single_box, no of basis funcs = %5i, threshold = %7.3g",
n, (double)threshold);
// Require that threshold value is positive.
if(threshold <= 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in compute_JK_single_box: (threshold <= 0)");
return -1;
}
// get largest limiting factor
Util::TimeMeter timeMeterTmp1;
ergo_real maxLimitingFactor = 0;
if(get_list_of_labeled_distrs_maxLimitingFactor(basisInfo,
integralInfo,
threshold,
&maxLimitingFactor,
maxDensityMatrixElement) != 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in get_list_of_labeled_distrs_maxLimitingFactor");
return -1;
}
do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS,
"get_list_of_labeled_distrs_maxLimitingFactor done, maxLimitingFactor = %22.11f",
(double)maxLimitingFactor);
timeMeterTmp1.print(LOG_AREA_INTEGRALS, "get_list_of_labeled_distrs_maxLimitingFactor");
// Get number of distributions
Util::TimeMeter timeMeterTmp2;
int distrCount = get_list_of_labeled_distrs(basisInfo,
integralInfo,
threshold,
NULL,
0,
maxLimitingFactor,
dens,
maxDensityMatrixElement);
do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS, "getting distrCount done, distrCount = %12i", distrCount);
timeMeterTmp2.print(LOG_AREA_INTEGRALS, "get_list_of_labeled_distrs for getting distrCount");
if(distrCount == 0)
{
do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS, "compute_JK_single_box: (distrCount == 0), skipping.");
memset(J, 0, n*n*sizeof(ergo_real));
memset(K, 0, n*n*sizeof(ergo_real));
return 0;
}
if(distrCount <= 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in compute_JK_single_box: (distrCount <= 0)");
return -1;
}
std::vector<DistributionSpecStructLabeled> distrList(distrCount);
// create list of product primitives, with labels
Util::TimeMeter timeMeterTmp3;
int distrCountTemp = get_list_of_labeled_distrs(basisInfo,
integralInfo,
threshold,
&distrList[0],
distrCount,
maxLimitingFactor,
dens,
maxDensityMatrixElement);
if(distrCountTemp != distrCount)
{
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in compute_JK_single_box:(distrCountTemp != distrCount)");
return -1;
}
do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS, "get_list_of_labeled_distrs done, distrCount = %12i", distrCount);
timeMeterTmp3.print(LOG_AREA_INTEGRALS, "get_list_of_labeled_distrs");
// compute extent for all distrs
Util::TimeMeter timeMeterComputeExtentForAllDistrs;
compute_extent_for_list_of_distributions(distrCount,
&distrList[0],
threshold,
maxLimitingFactor,
maxDensityMatrixElement);
timeMeterComputeExtentForAllDistrs.print(LOG_AREA_INTEGRALS, "Compute extent for all distrs");
// get maximum number of monomials
int maxNoOfMonomials = 0;
for(int i = 0; i < distrCount; i++)
{
int degree = 0;
for(int j = 0; j < 3; j++)
degree += distrList[i].distr.monomialInts[j];
int noOfMonomials = integralInfo.monomial_info.no_of_monomials_list[degree];
if(noOfMonomials > maxNoOfMonomials)
maxNoOfMonomials = noOfMonomials;
} // END FOR ABcount
do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS, "distrCount = %i", distrCount);
std::vector<DistributionSpecStructLabeled> distrList2(distrCount);
int jcounter = 0;
for(int i = 0; i < distrCount; i++)
{
distrList2[jcounter] = distrList[i];
jcounter++;
}
distrCount = jcounter;
do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS, "distrCount = %i (after removing negligible products)", distrCount);
do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS, "Creating list of distributions done, distrCount = %9i", distrCount);
timeMeterDistrList.print(LOG_AREA_INTEGRALS, "Creating list of distributions");
#define NUMBER_OF_PARTS 1
int n_list[NUMBER_OF_PARTS];
distr_list_description_struct distr_list_description_list[NUMBER_OF_PARTS];
for(int i = 0; i < NUMBER_OF_PARTS; i++)
n_list[i] = 0;
for(int i = 0; i < distrCount; i++)
n_list[i % NUMBER_OF_PARTS]++;
ergo_real centerCoords[3];
memset(centerCoords, 0, 3*sizeof(ergo_real));
int currIndex = 0;
for(int i = 0; i < NUMBER_OF_PARTS; i++)
{
if(organize_distributions(integralInfo,
&distrList2[currIndex],
n_list[i],
&distr_list_description_list[i].org,
centerCoords,
HUGE_INTEGER_NUMBER) != 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in organize_distributions");
return -1;
}
currIndex += n_list[i];
}
// Set J to zero
memset(J, 0, n*n*sizeof(ergo_real));
// Set K to zero
memset(K, 0, n*n*sizeof(ergo_real));
// Allocate buffers needed by integral code
JK_contribs_buffer_struct bufferStruct;
allocate_buffers_needed_by_integral_code(integralInfo, maxNoOfMonomials, 0, &bufferStruct);
for(int i = 0; i < NUMBER_OF_PARTS; i++)
for(int j = i; j < NUMBER_OF_PARTS; j++)
{
int self = 0;
if(i == j)
self = 1;
Util::TimeMeter timeMeterJKcontribs;
if(get_JK_contribs_from_2_interacting_boxes(basisInfo,
integralInfo,
maxNoOfMonomials,
J,
K,
dens,
&distr_list_description_list[i].org.minimalDistrList[0],
distr_list_description_list[i].org.groupList.size(),
&distr_list_description_list[i].org.groupList[0],
&distr_list_description_list[j].org.minimalDistrList[0],
distr_list_description_list[j].org.groupList.size(),
&distr_list_description_list[j].org.groupList[0],
&distr_list_description_list[i].org.clusterList[0],
distr_list_description_list[i].org.clusterList.size(),
&distr_list_description_list[j].org.clusterList[0],
distr_list_description_list[j].org.clusterList.size(),
&distr_list_description_list[i].org.batchList[0],
distr_list_description_list[i].org.batchList.size(),
&distr_list_description_list[j].org.batchList[0],
distr_list_description_list[j].org.batchList.size(),
&distr_list_description_list[i].org.basisFuncPairList[0],
&distr_list_description_list[j].org.basisFuncPairList[0],
self,
threshold,
&bufferStruct) != 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in get_JK_contribs_from_2_interacting_boxes");
return -1;
}
timeMeterJKcontribs.print(LOG_AREA_INTEGRALS, "get_JK_contribs_from_2_interacting_boxes for both J and K together");
} // END FOR i j
// Fill the other triangle of K
for(int i = 0; i < n; i++)
for(int j = 0; j < i; j++)
K[i*n+j] = K[j*n+i];
// Fill the other triangle of J
for(int i = 0; i < n; i++)
for(int j = 0; j < i; j++)
J[i*n+j] = J[j*n+i];
free_buffers_needed_by_integral_code(&bufferStruct);
do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS, "compute_JK_single_box ending OK.");
timeMeterTot.print(LOG_AREA_INTEGRALS, "compute_JK_single_box");
return 0;
}
|