1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file integrals_2el_explicit.cc
@brief Code for explicit computation of 4-index 2-electron
integrals.
@author: Elias Rudberg <em>responsible</em>
*/
/* Written by Elias Rudberg, KTH, Stockholm */
#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <errno.h>
#include <memory.h>
#include <time.h>
#include <stdarg.h>
#include "integrals_2el_explicit.h"
#include "memorymanag.h"
#include "pi.h"
#include "output.h"
#include "utilities.h"
#include "boysfunction.h"
#include "integral_info.h"
#include "integrals_general.h"
#include "integrals_2el_single.h"
typedef struct
{
int a, b, c, d;
int poly_ab_index;
int poly_cd_index;
} abcd_struct;
#define set_abcd_list_item_macro(i,A,B,C,D) \
list[i].a = A; list[i].b = B; list[i].c = C; list[i].d = D;
static int globalCount = 0;
ergo_real
do_2e_integral(int mu,
int nu,
int la,
int si,
const BasisInfoStruct & basisInfo,
const IntegralInfo & integralInfo) {
return do_2e_integral_general(mu,
nu,
la,
si,
basisInfo,
basisInfo,
basisInfo,
basisInfo,
integralInfo);
}
ergo_real
do_2e_integral_general(int mu,
int nu,
int la,
int si,
const BasisInfoStruct & basisInfo_mu,
const BasisInfoStruct & basisInfo_nu,
const BasisInfoStruct & basisInfo_la,
const BasisInfoStruct & basisInfo_si,
const IntegralInfo & integralInfo)
{
int n_psi2, i, j;
ergo_real sum, currIntegral;
const int maxCount = 1000;
DistributionSpecStruct list_psi1[maxCount];
DistributionSpecStruct list_psi2[maxCount];
/* form product of basisfuncs mu and nu, store product in psi1 */
int n_psi1 = get_product_simple_primitives(basisInfo_mu, mu,
basisInfo_nu, nu,
list_psi1,
maxCount,
0);
if(n_psi1 <= 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in get_product_simple_primitives\n");
exit(EXIT_FAILURE);
return 0;
}
/* form product of basisfuncs la and si, store product in psi2 */
n_psi2 = get_product_simple_primitives(basisInfo_la, la,
basisInfo_si, si,
list_psi2,
maxCount,
0);
if(n_psi2 <= 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in get_product_simple_primitives\n");
exit(EXIT_FAILURE);
return 0;
}
const JK::ExchWeights CAM_params_not_used;
sum = 0;
for(i = 0; i < n_psi1; i++)
{
DistributionSpecStruct* prim_psi1 = &list_psi1[i];
for(j = 0; j < n_psi2; j++)
{
DistributionSpecStruct* prim_psi2 = &list_psi2[j];
globalCount++;
currIntegral = do_2e_integral_using_symb_info(CAM_params_not_used, prim_psi1, prim_psi2, integralInfo);
sum += currIntegral;
} /* END FOR j */
} /* END FOR i */
return sum;
}
/** compute_2e_matrix_simple computes the 2el matrix in the simplest
possible way. It assumes that the matrix is computed for closed
shell. The weight of the HF exchange is controlled by @param hf_weight
which is equal 1 for ordinary Hartree-Fock calculation. No
assumption are made regarding symmetry of the density matrix
@param dens . The computed two-electron part of the Fock matrix is
returned in @param result .
@param basisInfo info about the used basis set.
@param integralInfo info needed for evaluation of integrals of Gaussian functions.
*/
int
compute_2e_matrix_simple(const BasisInfoStruct & basisInfo,
const IntegralInfo & integralInfo,
ergo_real hf_weight,
ergo_real* result,
const ergo_real* dens)
{
int mu, nu, sigma, lambda;
int nbast = basisInfo.noOfBasisFuncs;
ergo_real munusila, mulasinu, sum;
do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS, "entering compute_2e_matrix HF_WEIGHT=%f", (double)hf_weight);
for(mu = 0; mu < nbast; mu++)
{
for(nu = 0; nu < nbast; nu++)
{
sum = 0;
for(lambda = 0; lambda < nbast; lambda++)
{
for(sigma = 0; sigma < nbast; sigma++)
{
munusila = do_2e_integral(mu, nu, sigma, lambda, basisInfo, integralInfo);
mulasinu = do_2e_integral(mu, lambda, sigma, nu, basisInfo, integralInfo);
sum +=
dens[lambda*nbast+sigma] *
(munusila - 0.5 * hf_weight * mulasinu);
} /* END FOR sigma */
} /* END FOR lambda */
result[mu*nbast+nu] = sum;
} /* END FOR nu */
} /* END FOR mu */
do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS, "compute_2e_matrix ending OK\n");
return 0;
}
static int
compute_J_and_K_integraldriven(const BasisInfoStruct & basisInfo,
const IntegralInfo & integralInfo,
ergo_real* J,
ergo_real* K,
ergo_real* dens)
{
int n, nBytes, i, j, count, a, b, c, d;
Util::TimeMeter timeMeter;
do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS, "entering compute_J_and_K_integraldriven");
n = basisInfo.noOfBasisFuncs;
nBytes = n * n * sizeof(ergo_real);
memset(J, 0, nBytes);
memset(K, 0, nBytes);
count = 0;
a = 0;
b = 0;
c = 0;
d = 0;
while(d < n)
{
abcd_struct list[8];
/* compute integral */
ergo_real integralValue = do_2e_integral(a, b, c, d, basisInfo, integralInfo);
count++;
/* determine unique configurations */
set_abcd_list_item_macro(0, a, b, c, d);
set_abcd_list_item_macro(1, a, b, d, c);
set_abcd_list_item_macro(2, b, a, c, d);
set_abcd_list_item_macro(3, b, a, d, c);
set_abcd_list_item_macro(4, c, d, a, b);
set_abcd_list_item_macro(5, d, c, a, b);
set_abcd_list_item_macro(6, c, d, b, a);
set_abcd_list_item_macro(7, d, c, b, a);
for(i = 0; i < 8; i++)
{
abcd_struct* abcd = &list[i];
int aa, bb, cc, dd;
/* check if this is a new unique configuration */
int unique = 1;
for(j = 0; j < i; j++)
{
if(abcd->a == list[j].a &&
abcd->b == list[j].b &&
abcd->c == list[j].c &&
abcd->d == list[j].d)
unique = 0;
}
if(unique == 0)
continue;
/* now we know that this configuration is unique. */
aa = abcd->a;
bb = abcd->b;
cc = abcd->c;
dd = abcd->d;
#if 1
/* add contribution to coulomb matrix */
J[aa*n+bb] += dens[cc*n+dd] * integralValue;
/* add contribution to exchange matrix */
K[aa*n+dd] += -0.5 * dens[bb*n+cc] * integralValue;
#endif
} /* END FOR i go through 8 configurations */
/* now get numbers for next unique integral */
d++;
if(d < n)
continue;
/* d has hit the roof */
c++;
if(c < n)
{
d = c;
continue;
}
/* c has hit roof */
b++;
if(b < n)
{
c = a;
d = b;
continue;
}
/* b has hit roof */
a++;
if(a < n)
{
b = a;
c = a;
d = a;
continue;
}
/* a has hit roof. This means that we are done. */
break;
} /* END WHILE more unique integrals */
do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS, "compute_J_and_K_integraldriven ending OK");
timeMeter.print(LOG_AREA_INTEGRALS, "compute_J_and_K_integraldriven");
do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS, "number of unique integrals computed: %i", count);
return 0;
}
int
compute_2e_matrix_list_explicit(const BasisInfoStruct & basisInfo,
const IntegralInfo & integralInfo,
ergo_real** resultList,
ergo_real** densList,
int noOfMatrices,
ergo_real threshold)
{
ergo_real* J;
int n, i, j;
if(noOfMatrices != 1)
do_output(LOG_CAT_INFO, LOG_AREA_INTEGRALS, "compute_2e_matrix_list_explicit: (noOfMatrices != 1), will take some time");
n = basisInfo.noOfBasisFuncs;
J = (ergo_real*)ergo_malloc(n*n*sizeof(ergo_real));
for(j = 0; j < noOfMatrices; j++)
{
if(compute_J_and_K_integraldriven(basisInfo,
integralInfo,
J,
resultList[j],
densList[j]) != 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in compute_J_and_K_integraldriven");
return -1;
}
for(i = 0; i < n*n; i++)
{
resultList[j][i] += J[i];
} // END FOR i
} // END FOR j
ergo_free(J);
return 0;
}
|