1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file integrals_2el_util_funcs.cc
\brief Code for utility functions used by 2-electron integral
computation (i.e. computation of J and K matrices).
@author: Elias Rudberg <em>responsible</em>.
*/
#include "integrals_2el_util_funcs.h"
/* ELIAS NOTE 2014-05-29: The do_summedIntegralList_contribs_std
routine defined in this file is responsible for a large part of the
computational effort for both J and K matrix
construction. Therefore, this routine would be a good candidate for
further optimization attempts. */
/* This is the simple implementation, without unrolling. It turned
out that this could be optimized significantly by unrolling the
outer loop. */
/*
ELIAS NOTE 2014-07-13: Commented out this unused routine to silence compiler warning.
static void do_summedIntegralList_contribs_std_simple(const i_j_val_struct* conv_mat_1_sp, int conv_mat_1_sp_nnz,
const i_j_val_struct* conv_mat_2_sp, int conv_mat_2_sp_nnz,
int noOfMonomials_1, int noOfMonomials_2,
const ergo_real* primitiveIntegralList,
int noOfBasisFuncPairs_1, int noOfBasisFuncPairs_2,
ergo_real* summedIntegralList) {
for(int idx_i = 0; idx_i < conv_mat_1_sp_nnz; idx_i++) {
int idx_1 = conv_mat_1_sp[idx_i].i;
int ii = conv_mat_1_sp[idx_i].j;
ergo_real value_i = conv_mat_1_sp[idx_i].value;
const ergo_real* primitiveIntegralListPtr = &primitiveIntegralList[ii*noOfMonomials_2];
ergo_real* summedIntegralListPtr = &summedIntegralList[idx_1*noOfBasisFuncPairs_2];
int idx_j = 0;
while(idx_j < conv_mat_2_sp_nnz) {
int nn = conv_mat_2_sp[idx_j].same_i_count;
ergo_real sum = 0;
for(int kk = 0; kk < nn; kk++) {
int jj = conv_mat_2_sp[idx_j+kk].j;
sum += primitiveIntegralListPtr[jj] * conv_mat_2_sp[idx_j+kk].value;
}
int idx_2 = conv_mat_2_sp[idx_j].i;
summedIntegralListPtr[idx_2] += sum * value_i;
idx_j += nn;
}
}
}
*/
void do_summedIntegralList_contribs_std(const i_j_val_struct* conv_mat_1_sp, int conv_mat_1_sp_nnz,
const i_j_val_struct* conv_mat_2_sp, int conv_mat_2_sp_nnz,
int noOfMonomials_1, int noOfMonomials_2,
const ergo_real* primitiveIntegralList,
int noOfBasisFuncPairs_1, int noOfBasisFuncPairs_2,
ergo_real* summedIntegralList) {
int idx_i = 0;
while(idx_i < conv_mat_1_sp_nnz) {
if(idx_i == conv_mat_1_sp_nnz-1) {
// Only one left; treat in the old way
int idx_1 = conv_mat_1_sp[idx_i].i;
int ii = conv_mat_1_sp[idx_i].j;
ergo_real value_i = conv_mat_1_sp[idx_i].value;
const ergo_real* primitiveIntegralListPtr = &primitiveIntegralList[ii*noOfMonomials_2];
ergo_real* summedIntegralListPtr = &summedIntegralList[idx_1*noOfBasisFuncPairs_2];
int idx_j = 0;
while(idx_j < conv_mat_2_sp_nnz) {
int nn = conv_mat_2_sp[idx_j].same_i_count;
ergo_real sum = 0;
for(int kk = 0; kk < nn; kk++) {
int jj = conv_mat_2_sp[idx_j+kk].j;
sum += primitiveIntegralListPtr[jj] * conv_mat_2_sp[idx_j+kk].value;
}
int idx_2 = conv_mat_2_sp[idx_j].i;
summedIntegralListPtr[idx_2] += sum * value_i;
idx_j += nn;
}
idx_i++;
}
else if(idx_i == conv_mat_1_sp_nnz-2) {
// Unroll by 2
int idx_1_A = conv_mat_1_sp[idx_i].i;
int ii_A = conv_mat_1_sp[idx_i].j;
ergo_real value_i_A = conv_mat_1_sp[idx_i].value;
const ergo_real* primitiveIntegralListPtr_A = &primitiveIntegralList[ii_A*noOfMonomials_2];
ergo_real* summedIntegralListPtr_A = &summedIntegralList[idx_1_A*noOfBasisFuncPairs_2];
int idx_1_B = conv_mat_1_sp[idx_i+1].i;
int ii_B = conv_mat_1_sp[idx_i+1].j;
ergo_real value_i_B = conv_mat_1_sp[idx_i+1].value;
const ergo_real* primitiveIntegralListPtr_B = &primitiveIntegralList[ii_B*noOfMonomials_2];
ergo_real* summedIntegralListPtr_B = &summedIntegralList[idx_1_B*noOfBasisFuncPairs_2];
int idx_j = 0;
while(idx_j < conv_mat_2_sp_nnz) {
int nn = conv_mat_2_sp[idx_j].same_i_count;
ergo_real sum_A = 0;
ergo_real sum_B = 0;
for(int kk = 0; kk < nn; kk++) {
int jj = conv_mat_2_sp[idx_j+kk].j;
sum_A += primitiveIntegralListPtr_A[jj] * conv_mat_2_sp[idx_j+kk].value;
sum_B += primitiveIntegralListPtr_B[jj] * conv_mat_2_sp[idx_j+kk].value;
}
int idx_2 = conv_mat_2_sp[idx_j].i;
summedIntegralListPtr_A[idx_2] += sum_A * value_i_A;
summedIntegralListPtr_B[idx_2] += sum_B * value_i_B;
idx_j += nn;
}
idx_i += 2;
}
else if(idx_i == conv_mat_1_sp_nnz-3) {
// Unroll by 3
int idx_1_A = conv_mat_1_sp[idx_i].i;
int ii_A = conv_mat_1_sp[idx_i].j;
ergo_real value_i_A = conv_mat_1_sp[idx_i].value;
const ergo_real* primitiveIntegralListPtr_A = &primitiveIntegralList[ii_A*noOfMonomials_2];
ergo_real* summedIntegralListPtr_A = &summedIntegralList[idx_1_A*noOfBasisFuncPairs_2];
int idx_1_B = conv_mat_1_sp[idx_i+1].i;
int ii_B = conv_mat_1_sp[idx_i+1].j;
ergo_real value_i_B = conv_mat_1_sp[idx_i+1].value;
const ergo_real* primitiveIntegralListPtr_B = &primitiveIntegralList[ii_B*noOfMonomials_2];
ergo_real* summedIntegralListPtr_B = &summedIntegralList[idx_1_B*noOfBasisFuncPairs_2];
int idx_1_C = conv_mat_1_sp[idx_i+2].i;
int ii_C = conv_mat_1_sp[idx_i+2].j;
ergo_real value_i_C = conv_mat_1_sp[idx_i+2].value;
const ergo_real* primitiveIntegralListPtr_C = &primitiveIntegralList[ii_C*noOfMonomials_2];
ergo_real* summedIntegralListPtr_C = &summedIntegralList[idx_1_C*noOfBasisFuncPairs_2];
int idx_j = 0;
while(idx_j < conv_mat_2_sp_nnz) {
int nn = conv_mat_2_sp[idx_j].same_i_count;
ergo_real sum_A = 0;
ergo_real sum_B = 0;
ergo_real sum_C = 0;
for(int kk = 0; kk < nn; kk++) {
int jj = conv_mat_2_sp[idx_j+kk].j;
sum_A += primitiveIntegralListPtr_A[jj] * conv_mat_2_sp[idx_j+kk].value;
sum_B += primitiveIntegralListPtr_B[jj] * conv_mat_2_sp[idx_j+kk].value;
sum_C += primitiveIntegralListPtr_C[jj] * conv_mat_2_sp[idx_j+kk].value;
}
int idx_2 = conv_mat_2_sp[idx_j].i;
summedIntegralListPtr_A[idx_2] += sum_A * value_i_A;
summedIntegralListPtr_B[idx_2] += sum_B * value_i_B;
summedIntegralListPtr_C[idx_2] += sum_C * value_i_C;
idx_j += nn;
}
idx_i += 3;
}
else if(idx_i == conv_mat_1_sp_nnz-4) {
// Unroll by 4
int idx_1_A = conv_mat_1_sp[idx_i].i;
int ii_A = conv_mat_1_sp[idx_i].j;
ergo_real value_i_A = conv_mat_1_sp[idx_i].value;
const ergo_real* primitiveIntegralListPtr_A = &primitiveIntegralList[ii_A*noOfMonomials_2];
ergo_real* summedIntegralListPtr_A = &summedIntegralList[idx_1_A*noOfBasisFuncPairs_2];
int idx_1_B = conv_mat_1_sp[idx_i+1].i;
int ii_B = conv_mat_1_sp[idx_i+1].j;
ergo_real value_i_B = conv_mat_1_sp[idx_i+1].value;
const ergo_real* primitiveIntegralListPtr_B = &primitiveIntegralList[ii_B*noOfMonomials_2];
ergo_real* summedIntegralListPtr_B = &summedIntegralList[idx_1_B*noOfBasisFuncPairs_2];
int idx_1_C = conv_mat_1_sp[idx_i+2].i;
int ii_C = conv_mat_1_sp[idx_i+2].j;
ergo_real value_i_C = conv_mat_1_sp[idx_i+2].value;
const ergo_real* primitiveIntegralListPtr_C = &primitiveIntegralList[ii_C*noOfMonomials_2];
ergo_real* summedIntegralListPtr_C = &summedIntegralList[idx_1_C*noOfBasisFuncPairs_2];
int idx_1_D = conv_mat_1_sp[idx_i+3].i;
int ii_D = conv_mat_1_sp[idx_i+3].j;
ergo_real value_i_D = conv_mat_1_sp[idx_i+3].value;
const ergo_real* primitiveIntegralListPtr_D = &primitiveIntegralList[ii_D*noOfMonomials_2];
ergo_real* summedIntegralListPtr_D = &summedIntegralList[idx_1_D*noOfBasisFuncPairs_2];
int idx_j = 0;
while(idx_j < conv_mat_2_sp_nnz) {
int nn = conv_mat_2_sp[idx_j].same_i_count;
ergo_real sum_A = 0;
ergo_real sum_B = 0;
ergo_real sum_C = 0;
ergo_real sum_D = 0;
for(int kk = 0; kk < nn; kk++) {
int jj = conv_mat_2_sp[idx_j+kk].j;
sum_A += primitiveIntegralListPtr_A[jj] * conv_mat_2_sp[idx_j+kk].value;
sum_B += primitiveIntegralListPtr_B[jj] * conv_mat_2_sp[idx_j+kk].value;
sum_C += primitiveIntegralListPtr_C[jj] * conv_mat_2_sp[idx_j+kk].value;
sum_D += primitiveIntegralListPtr_D[jj] * conv_mat_2_sp[idx_j+kk].value;
}
int idx_2 = conv_mat_2_sp[idx_j].i;
summedIntegralListPtr_A[idx_2] += sum_A * value_i_A;
summedIntegralListPtr_B[idx_2] += sum_B * value_i_B;
summedIntegralListPtr_C[idx_2] += sum_C * value_i_C;
summedIntegralListPtr_D[idx_2] += sum_D * value_i_D;
idx_j += nn;
}
idx_i += 4;
}
else if(idx_i == conv_mat_1_sp_nnz-5) {
// Unroll by 5
int idx_1_A = conv_mat_1_sp[idx_i].i;
int ii_A = conv_mat_1_sp[idx_i].j;
ergo_real value_i_A = conv_mat_1_sp[idx_i].value;
const ergo_real* primitiveIntegralListPtr_A = &primitiveIntegralList[ii_A*noOfMonomials_2];
ergo_real* summedIntegralListPtr_A = &summedIntegralList[idx_1_A*noOfBasisFuncPairs_2];
int idx_1_B = conv_mat_1_sp[idx_i+1].i;
int ii_B = conv_mat_1_sp[idx_i+1].j;
ergo_real value_i_B = conv_mat_1_sp[idx_i+1].value;
const ergo_real* primitiveIntegralListPtr_B = &primitiveIntegralList[ii_B*noOfMonomials_2];
ergo_real* summedIntegralListPtr_B = &summedIntegralList[idx_1_B*noOfBasisFuncPairs_2];
int idx_1_C = conv_mat_1_sp[idx_i+2].i;
int ii_C = conv_mat_1_sp[idx_i+2].j;
ergo_real value_i_C = conv_mat_1_sp[idx_i+2].value;
const ergo_real* primitiveIntegralListPtr_C = &primitiveIntegralList[ii_C*noOfMonomials_2];
ergo_real* summedIntegralListPtr_C = &summedIntegralList[idx_1_C*noOfBasisFuncPairs_2];
int idx_1_D = conv_mat_1_sp[idx_i+3].i;
int ii_D = conv_mat_1_sp[idx_i+3].j;
ergo_real value_i_D = conv_mat_1_sp[idx_i+3].value;
const ergo_real* primitiveIntegralListPtr_D = &primitiveIntegralList[ii_D*noOfMonomials_2];
ergo_real* summedIntegralListPtr_D = &summedIntegralList[idx_1_D*noOfBasisFuncPairs_2];
int idx_1_E = conv_mat_1_sp[idx_i+4].i;
int ii_E = conv_mat_1_sp[idx_i+4].j;
ergo_real value_i_E = conv_mat_1_sp[idx_i+4].value;
const ergo_real* primitiveIntegralListPtr_E = &primitiveIntegralList[ii_E*noOfMonomials_2];
ergo_real* summedIntegralListPtr_E = &summedIntegralList[idx_1_E*noOfBasisFuncPairs_2];
int idx_j = 0;
while(idx_j < conv_mat_2_sp_nnz) {
int nn = conv_mat_2_sp[idx_j].same_i_count;
ergo_real sum_A = 0;
ergo_real sum_B = 0;
ergo_real sum_C = 0;
ergo_real sum_D = 0;
ergo_real sum_E = 0;
for(int kk = 0; kk < nn; kk++) {
int jj = conv_mat_2_sp[idx_j+kk].j;
sum_A += primitiveIntegralListPtr_A[jj] * conv_mat_2_sp[idx_j+kk].value;
sum_B += primitiveIntegralListPtr_B[jj] * conv_mat_2_sp[idx_j+kk].value;
sum_C += primitiveIntegralListPtr_C[jj] * conv_mat_2_sp[idx_j+kk].value;
sum_D += primitiveIntegralListPtr_D[jj] * conv_mat_2_sp[idx_j+kk].value;
sum_E += primitiveIntegralListPtr_E[jj] * conv_mat_2_sp[idx_j+kk].value;
}
int idx_2 = conv_mat_2_sp[idx_j].i;
summedIntegralListPtr_A[idx_2] += sum_A * value_i_A;
summedIntegralListPtr_B[idx_2] += sum_B * value_i_B;
summedIntegralListPtr_C[idx_2] += sum_C * value_i_C;
summedIntegralListPtr_D[idx_2] += sum_D * value_i_D;
summedIntegralListPtr_E[idx_2] += sum_E * value_i_E;
idx_j += nn;
}
idx_i += 5;
}
else {
// Unroll by 6
int idx_1_A = conv_mat_1_sp[idx_i].i;
int ii_A = conv_mat_1_sp[idx_i].j;
ergo_real value_i_A = conv_mat_1_sp[idx_i].value;
const ergo_real* primitiveIntegralListPtr_A = &primitiveIntegralList[ii_A*noOfMonomials_2];
ergo_real* summedIntegralListPtr_A = &summedIntegralList[idx_1_A*noOfBasisFuncPairs_2];
int idx_1_B = conv_mat_1_sp[idx_i+1].i;
int ii_B = conv_mat_1_sp[idx_i+1].j;
ergo_real value_i_B = conv_mat_1_sp[idx_i+1].value;
const ergo_real* primitiveIntegralListPtr_B = &primitiveIntegralList[ii_B*noOfMonomials_2];
ergo_real* summedIntegralListPtr_B = &summedIntegralList[idx_1_B*noOfBasisFuncPairs_2];
int idx_1_C = conv_mat_1_sp[idx_i+2].i;
int ii_C = conv_mat_1_sp[idx_i+2].j;
ergo_real value_i_C = conv_mat_1_sp[idx_i+2].value;
const ergo_real* primitiveIntegralListPtr_C = &primitiveIntegralList[ii_C*noOfMonomials_2];
ergo_real* summedIntegralListPtr_C = &summedIntegralList[idx_1_C*noOfBasisFuncPairs_2];
int idx_1_D = conv_mat_1_sp[idx_i+3].i;
int ii_D = conv_mat_1_sp[idx_i+3].j;
ergo_real value_i_D = conv_mat_1_sp[idx_i+3].value;
const ergo_real* primitiveIntegralListPtr_D = &primitiveIntegralList[ii_D*noOfMonomials_2];
ergo_real* summedIntegralListPtr_D = &summedIntegralList[idx_1_D*noOfBasisFuncPairs_2];
int idx_1_E = conv_mat_1_sp[idx_i+4].i;
int ii_E = conv_mat_1_sp[idx_i+4].j;
ergo_real value_i_E = conv_mat_1_sp[idx_i+4].value;
const ergo_real* primitiveIntegralListPtr_E = &primitiveIntegralList[ii_E*noOfMonomials_2];
ergo_real* summedIntegralListPtr_E = &summedIntegralList[idx_1_E*noOfBasisFuncPairs_2];
int idx_1_F = conv_mat_1_sp[idx_i+5].i;
int ii_F = conv_mat_1_sp[idx_i+5].j;
ergo_real value_i_F = conv_mat_1_sp[idx_i+5].value;
const ergo_real* primitiveIntegralListPtr_F = &primitiveIntegralList[ii_F*noOfMonomials_2];
ergo_real* summedIntegralListPtr_F = &summedIntegralList[idx_1_F*noOfBasisFuncPairs_2];
int idx_j = 0;
while(idx_j < conv_mat_2_sp_nnz) {
int nn = conv_mat_2_sp[idx_j].same_i_count;
ergo_real sum_A = 0;
ergo_real sum_B = 0;
ergo_real sum_C = 0;
ergo_real sum_D = 0;
ergo_real sum_E = 0;
ergo_real sum_F = 0;
for(int kk = 0; kk < nn; kk++) {
int jj = conv_mat_2_sp[idx_j+kk].j;
sum_A += primitiveIntegralListPtr_A[jj] * conv_mat_2_sp[idx_j+kk].value;
sum_B += primitiveIntegralListPtr_B[jj] * conv_mat_2_sp[idx_j+kk].value;
sum_C += primitiveIntegralListPtr_C[jj] * conv_mat_2_sp[idx_j+kk].value;
sum_D += primitiveIntegralListPtr_D[jj] * conv_mat_2_sp[idx_j+kk].value;
sum_E += primitiveIntegralListPtr_E[jj] * conv_mat_2_sp[idx_j+kk].value;
sum_F += primitiveIntegralListPtr_F[jj] * conv_mat_2_sp[idx_j+kk].value;
}
int idx_2 = conv_mat_2_sp[idx_j].i;
summedIntegralListPtr_A[idx_2] += sum_A * value_i_A;
summedIntegralListPtr_B[idx_2] += sum_B * value_i_B;
summedIntegralListPtr_C[idx_2] += sum_C * value_i_C;
summedIntegralListPtr_D[idx_2] += sum_D * value_i_D;
summedIntegralListPtr_E[idx_2] += sum_E * value_i_E;
summedIntegralListPtr_F[idx_2] += sum_F * value_i_F;
idx_j += nn;
}
idx_i += 6;
}
}
}
void do_summedIntegralList_contribs_self(const i_j_val_struct* conv_mat_1_sp, int conv_mat_1_sp_nnz,
const i_j_val_struct* conv_mat_2_sp, int conv_mat_2_sp_nnz,
int noOfMonomials_1, int noOfMonomials_2,
const ergo_real* primitiveIntegralList,
int noOfBasisFuncPairs_1, int noOfBasisFuncPairs_2,
ergo_real* summedIntegralList) {
// Special interactionWithSelf case
for(int idx_i = 0; idx_i < conv_mat_1_sp_nnz; idx_i++) {
int idx_1 = conv_mat_1_sp[idx_i].i;
int ii = conv_mat_1_sp[idx_i].j;
ergo_real value_i = conv_mat_1_sp[idx_i].value;
const ergo_real* primitiveIntegralListPtr = &primitiveIntegralList[ii*noOfMonomials_2];
ergo_real* summedIntegralListPtr = &summedIntegralList[idx_1*noOfBasisFuncPairs_2];
int idx_j = 0;
while(idx_j < conv_mat_2_sp_nnz) {
int nn = conv_mat_2_sp[idx_j].same_i_count;
ergo_real sum = 0;
for(int kk = 0; kk < nn; kk++) {
int jj = conv_mat_2_sp[idx_j+kk].j;
sum += primitiveIntegralListPtr[jj] * conv_mat_2_sp[idx_j+kk].value;
}
int idx_2 = conv_mat_2_sp[idx_j].i;
if(idx_1 == idx_2)
summedIntegralListPtr[idx_2] += sum * value_i * 0.5;
else if(idx_1 > idx_2)
summedIntegralListPtr[idx_2] += sum * value_i;
idx_j += nn;
}
}
}
|