1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file integrals_2el_utils.cc
\brief Code for various utilities used by 2-electron integral
computation (i.e. computation of J and K matrices).
@author: Elias Rudberg <em>responsible</em>.
*/
#include <string.h>
#include <stdexcept>
#include "integrals_2el_utils.h"
#include "integrals_hermite.h"
#include "template_blas_common.h"
#include "basis_func_extent.h"
#include "integrals_2el_repeating.h"
#include "integrals_general.h"
/* ----- ResultMatContrib implementation ----- */
ResultMatContrib::ResultMatContrib() {
currVecIndex = 0;
currContribCount = 0;
indexInCurrVec = 0;
currVecReservedSize = 20;
for(int i = 0; i < nVectorsMax; i++)
vList[i] = 0;
vList[currVecIndex] = new std::vector<RowColVal>;
vList[currVecIndex]->reserve(currVecReservedSize);
}
ResultMatContrib::~ResultMatContrib() {
for(int i = 0; i <= currVecIndex; i++)
delete vList[i];
}
void ResultMatContrib::addContrib(int row, int col, ergo_real value) {
// Check if there is room in current vector
assert(indexInCurrVec <= currVecReservedSize);
if(indexInCurrVec == currVecReservedSize) {
// Current vector is full. Reserve space in next vector and use it.
currVecIndex++;
if(currVecIndex >= nVectorsMax)
throw std::runtime_error("Error in ResultMatContrib::addContrib: (currVecIndex >= nVectorsMax).");
indexInCurrVec = 0;
currVecReservedSize *= 2;
vList[currVecIndex] = new std::vector<RowColVal>;
vList[currVecIndex]->reserve(currVecReservedSize);
}
RowColVal tmp = {row, col, value};
vList[currVecIndex]->push_back(tmp);
indexInCurrVec++;
currContribCount++;
}
const ResultMatContrib::RowColVal & ResultMatContrib::fetchNextContrib(int & currVecIndexForFetch, int & indexInCurrVecForFetch) const {
assert(currVecIndexForFetch >= 0 && currVecIndexForFetch < nVectorsMax);
int currVecSize = vList[currVecIndexForFetch]->size();
assert(indexInCurrVecForFetch >= 0 && indexInCurrVecForFetch < currVecSize);
const RowColVal & result = (*vList[currVecIndexForFetch])[indexInCurrVecForFetch];
indexInCurrVecForFetch++;
if(indexInCurrVecForFetch == currVecSize) {
currVecIndexForFetch++;
indexInCurrVecForFetch = 0;
}
return result;
}
/* ----- End of ResultMatContrib implementation ----- */
ergo_real
get_max_abs_vector_element(int n, const ergo_real* vector)
{
ergo_real maxabs = 0;
for(int i = 0; i < n; i++)
{
ergo_real absval = template_blas_fabs(vector[i]);
if(absval > maxabs)
maxabs = absval;
}
return maxabs;
}
box_struct::box_struct()
{
memset(branchIndexListForJ, 0, MAX_NO_OF_BRANCHES*sizeof(int));
memset(branchCountListForJ, 0, MAX_NO_OF_BRANCHES*sizeof(int));
}
void
allocate_buffers_needed_by_integral_code(const IntegralInfo & integralInfo,
int maxNoOfMonomials,
int basisFuncListCount_max,
JK_contribs_buffer_struct* bufferStruct)
{
bufferStruct->summedIntegralList = new ergo_real[MAX_NO_OF_BASIS_FUNC_PAIRS_PER_BATCH*MAX_NO_OF_BASIS_FUNC_PAIRS_PER_BATCH];
bufferStruct->primitiveIntegralList = new ergo_real[maxNoOfMonomials*maxNoOfMonomials];
bufferStruct->primitiveIntegralList_work = new ergo_real[maxNoOfMonomials*maxNoOfMonomials];
if(basisFuncListCount_max > 0)
{
bufferStruct->partial_dmat_1 = new ergo_real[basisFuncListCount_max*basisFuncListCount_max];
bufferStruct->partial_K_1 = new ergo_real[basisFuncListCount_max*basisFuncListCount_max];
// FIXME: only allocate _2 buffers if nonsymm case.
bufferStruct->partial_dmat_2 = new ergo_real[basisFuncListCount_max*basisFuncListCount_max];
bufferStruct->partial_K_2 = new ergo_real[basisFuncListCount_max*basisFuncListCount_max];
}
else
{
bufferStruct->partial_dmat_1 = NULL;
bufferStruct->partial_K_1 = NULL;
bufferStruct->partial_dmat_2 = NULL;
bufferStruct->partial_K_2 = NULL;
}
}
void
free_buffers_needed_by_integral_code(JK_contribs_buffer_struct* bufferStruct)
{
delete [] bufferStruct->summedIntegralList;
delete [] bufferStruct->primitiveIntegralList;
delete [] bufferStruct->primitiveIntegralList_work;
if(bufferStruct->partial_dmat_1)
delete [] bufferStruct->partial_dmat_1;
if(bufferStruct->partial_K_1)
delete [] bufferStruct->partial_K_1;
if(bufferStruct->partial_dmat_2)
delete [] bufferStruct->partial_dmat_2;
if(bufferStruct->partial_K_2)
delete [] bufferStruct->partial_K_2;
bufferStruct->summedIntegralList = NULL;
bufferStruct->primitiveIntegralList = NULL;
bufferStruct->primitiveIntegralList_work = NULL;
bufferStruct->partial_dmat_1 = NULL;
bufferStruct->partial_K_1 = NULL;
bufferStruct->partial_dmat_2 = NULL;
bufferStruct->partial_K_2 = NULL;
}
int
get_related_integrals_h(
const IntegralInfo & integralInfo,
const JK::ExchWeights & CAM_params,
int n1max, int noOfMonomials_1,
int n2max, int noOfMonomials_2,
ergo_real dx0,
ergo_real dx1,
ergo_real dx2,
ergo_real alpha1,
ergo_real alpha2,
ergo_real alpha0,
ergo_real* primitiveIntegralList,
ergo_real* primitiveIntegralList_work,
ergo_real resultPreFactor
)
{
get_related_integrals_hermite(integralInfo,
CAM_params,
n1max, noOfMonomials_1,
n2max, noOfMonomials_2,
dx0,
dx1,
dx2,
alpha0,
resultPreFactor,
primitiveIntegralList);
integralInfo.multiply_by_hermite_conversion_matrix_from_right(n1max,
n2max,
1.0/alpha1,
primitiveIntegralList,
primitiveIntegralList_work);
integralInfo.multiply_by_hermite_conversion_matrix_from_left(n1max,
n2max,
1.0/alpha2,
primitiveIntegralList_work,
primitiveIntegralList);
return 0;
}
static ergo_real
erfc_inverse(ergo_real x, ergo_real requested_accuracy)
{
ergo_real y_min = 0.0;
ergo_real y_max = 10.0;
if(template_blas_erfc(y_max) > x)
{
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in erfc_inverse: (erfc(y_max) > x)");
exit(EXIT_FAILURE);
}
int count = 0;
ergo_real y = 0;
while(y_max - y_min > requested_accuracy)
{
y = (y_min + y_max) / 2;
if(template_blas_erfc(y) > x)
y_min = y;
else
y_max = y;
count++;
if(count > 222)
{
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in erfc_inverse: too many iterations.");
exit(EXIT_FAILURE);
}
} // END WHILE requested accuracy not reached
return y;
}
void
compute_extent_for_list_of_distributions(int n,
DistributionSpecStructLabeled* distrList,
ergo_real threshold,
ergo_real maxLimitingFactor,
ergo_real maxabsDmatelement)
{
ergo_real requested_erfcinv_accuracy = 0.001;
for(int i = 0; i < n; i++)
{
ergo_real erfc_inverse_value = erfc_inverse(threshold / (distrList[i].limitingFactor * maxLimitingFactor * maxabsDmatelement), requested_erfcinv_accuracy);
distrList[i].distr.extent = erfc_inverse_value / template_blas_sqrt(distrList[i].distr.exponent);
}
}
int
get_list_of_labeled_distrs_maxLimitingFactor(const BasisInfoStruct & basisInfo,
const IntegralInfo & integralInfo,
ergo_real threshold,
ergo_real* resultMaxLimitingFactor,
ergo_real maxDensityMatrixElement)
{
int n = basisInfo.noOfBasisFuncs;
std::vector<ergo_real> basisFuncExtentList(n);
if(compute_extent_for_all_basis_funcs_2el(integralInfo,
basisInfo,
&basisFuncExtentList[0],
threshold,
maxDensityMatrixElement) != 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in compute_extent_for_all_basis_funcs");
return -1;
}
ergo_real maxExtent = 0;
for(int i = 0; i < n; i++)
{
ergo_real currExtent = basisFuncExtentList[i];
if(currExtent > maxExtent)
maxExtent = currExtent;
}
std::vector<int> orgIndexList(n);
// Create box system for basisInfo.
std::vector<box_item_struct> itemList(n);
for(int i = 0; i < n; i++)
{
for(int j = 0; j < 3; j++)
itemList[i].centerCoords[j] = basisInfo.basisFuncList[i].centerCoords[j];
itemList[i].originalIndex = i;
}
ergo_real toplevelBoxSize = 7.0;
BoxSystem boxSystem;
if(boxSystem.create_box_system(&itemList[0],
n,
toplevelBoxSize) != 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in create_box_system.");
return -1;
}
IntegratorWithMemory integrator(&integralInfo);
ergo_real maxLimitingFactor = 0;
for(int i = 0; i < n; i++)
{
// Now, instead of looping again over all n basis functions, we use box system to find relevant ones.
ergo_real maxDistance = basisFuncExtentList[i] + maxExtent;
ergo_real coords[3];
for(int coordNo = 0; coordNo < 3; coordNo++)
coords[coordNo] = basisInfo.basisFuncList[i].centerCoords[coordNo];
int nRelevant = boxSystem.get_items_near_point(&itemList[0], coords, maxDistance, &orgIndexList[0]);
for(int jRelevant = 0; jRelevant < nRelevant; jRelevant++)
{
int j = orgIndexList[jRelevant];
if(j < i)
continue;
// Now we are concerned with basis functions i and j.
// If they are far enough apart, we can skip this pair.
ergo_real dx = basisInfo.basisFuncList[i].centerCoords[0] - basisInfo.basisFuncList[j].centerCoords[0];
ergo_real dy = basisInfo.basisFuncList[i].centerCoords[1] - basisInfo.basisFuncList[j].centerCoords[1];
ergo_real dz = basisInfo.basisFuncList[i].centerCoords[2] - basisInfo.basisFuncList[j].centerCoords[2];
ergo_real distance = template_blas_sqrt(dx*dx + dy*dy + dz*dz);
if(distance > basisFuncExtentList[i] + basisFuncExtentList[j])
continue;
const int maxCountProduct = 10000;
DistributionSpecStruct psi_list[maxCountProduct];
/* form product of basisfuncs i and j, store product in psi_list */
int n_psi = get_product_simple_primitives(basisInfo, i,
basisInfo, j,
psi_list,
maxCountProduct,
0);
if(n_psi < 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in get_product_simple_primitives");
return -1;
}
for(int k = 0; k < n_psi; k++)
{
ergo_real limitingFactor = template_blas_sqrt(integrator.do_2e_integral(&psi_list[k]));
if(limitingFactor > maxLimitingFactor)
maxLimitingFactor = limitingFactor;
} // END FOR k
} // END FOR j
} // END FOR i
*resultMaxLimitingFactor = maxLimitingFactor;
return 0;
}
int
get_list_of_labeled_distrs(const BasisInfoStruct & basisInfo,
const IntegralInfo & integralInfo,
ergo_real threshold,
DistributionSpecStructLabeled* resultList,
int maxCountDistrs,
ergo_real maxLimitingFactor,
const ergo_real* dens,
ergo_real maxDensityMatrixElement)
{
int n = basisInfo.noOfBasisFuncs;
// compute extent for all basis functions
std::vector<ergo_real> basisFuncExtentList(n);
if(compute_extent_for_all_basis_funcs_2el(integralInfo,
basisInfo,
&basisFuncExtentList[0],
threshold,
maxDensityMatrixElement) != 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in compute_extent_for_all_basis_funcs");
return -1;
}
ergo_real maxExtent = 0;
for(int i = 0; i < n; i++)
{
ergo_real currExtent = basisFuncExtentList[i];
if(currExtent > maxExtent)
maxExtent = currExtent;
}
std::vector<int> orgIndexList(n);
// Create box system for basisInfo.
std::vector<box_item_struct> itemList(n);
for(int i = 0; i < n; i++)
{
for(int j = 0; j < 3; j++)
itemList[i].centerCoords[j] = basisInfo.basisFuncList[i].centerCoords[j];
itemList[i].originalIndex = i;
}
ergo_real toplevelBoxSize = 7.0;
BoxSystem boxSystem;
if(boxSystem.create_box_system(&itemList[0],
n,
toplevelBoxSize) != 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in create_box_system.");
return -1;
}
IntegratorWithMemory integrator(&integralInfo);
// create list of product primitives, with labels
int distrCount = 0;
for(int i = 0; i < n; i++)
{
// Now, instead of looping again over all n basis functions, we use box system to find relevant ones.
ergo_real maxDistance = basisFuncExtentList[i] + maxExtent;
ergo_real coords[3];
for(int coordNo = 0; coordNo < 3; coordNo++)
coords[coordNo] = basisInfo.basisFuncList[i].centerCoords[coordNo];
int nRelevant = boxSystem.get_items_near_point(&itemList[0], coords, maxDistance, &orgIndexList[0]);
for(int jRelevant = 0; jRelevant < nRelevant; jRelevant++)
{
int j = orgIndexList[jRelevant];
if(j < i)
continue;
// Now we are concerned with basis functions i and j.
// If they are far enough apart, we can skip this pair.
ergo_real dx = basisInfo.basisFuncList[i].centerCoords[0] - basisInfo.basisFuncList[j].centerCoords[0];
ergo_real dy = basisInfo.basisFuncList[i].centerCoords[1] - basisInfo.basisFuncList[j].centerCoords[1];
ergo_real dz = basisInfo.basisFuncList[i].centerCoords[2] - basisInfo.basisFuncList[j].centerCoords[2];
ergo_real distance = template_blas_sqrt(dx*dx + dy*dy + dz*dz);
if(distance > basisFuncExtentList[i] + basisFuncExtentList[j])
continue;
// Set dmatElement if dens given, otherwise just set it to zero.
ergo_real dmatElement = 0;
if(dens != NULL)
dmatElement = dens[i*n+j];
const int maxCountProduct = 10000;
DistributionSpecStruct psi_list[maxCountProduct];
/* form product of basisfuncs i and j, store product in psi_list */
int n_psi = get_product_simple_primitives(basisInfo, i,
basisInfo, j,
psi_list,
maxCountProduct,
0);
if(n_psi < 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in get_product_simple_primitives");
return -1;
}
for(int k = 0; k < n_psi; k++)
{
ergo_real limitingFactor = template_blas_sqrt(integrator.do_2e_integral(&psi_list[k]));
if(limitingFactor*maxLimitingFactor*maxDensityMatrixElement > threshold)
{
if(maxCountDistrs > 0 && distrCount >= maxCountDistrs)
{
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in get_list_of_labeled_distrs: (maxCountDistrs > 0 && distrCount >= maxCountDistrs)");
return -1;
}
if(resultList != NULL)
{
resultList[distrCount].distr = psi_list[k];
resultList[distrCount].basisFuncIndex_1 = i;
resultList[distrCount].basisFuncIndex_2 = j;
resultList[distrCount].pairIndex = -1; // not used
resultList[distrCount].limitingFactor = limitingFactor;
resultList[distrCount].dmatElement = dmatElement;
}
distrCount++;
} // END IF above threshold
} // END FOR k
} // END FOR j
} // END FOR i
return distrCount;
}
static void
create_item_list_from_list_of_distributions(int n,
const DistributionSpecStructLabeled* distrList,
box_item_struct* itemList)
{
for(int i = 0; i < n; i++)
{
for(int j = 0; j < 3; j++)
itemList[i].centerCoords[j] = distrList[i].distr.centerCoords[j];
itemList[i].originalIndex = i;
} // END FOR i
}
int
create_box_system_and_reorder_distrs(int distrCount,
DistributionSpecStructLabeled* distrList,
ergo_real toplevelBoxSize,
BoxSystem & boxSystem)
{
std::vector<box_item_struct> itemList(distrCount);
create_item_list_from_list_of_distributions(distrCount, &distrList[0], &itemList[0]);
if(boxSystem.create_box_system(&itemList[0],
distrCount,
toplevelBoxSize) != 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in create_box_system");
return -1;
}
// reorder list of labeled distrs, where they are ordered box by box
// at the level of smallest boxes. Since the distr struct is rather
// big we want to do this reordering without using a whole new
// vector of structs. Instead we use two vectors of int, one
// containing the current location of each distr and the other
// containing the contents of each entry.
std::vector<int> locations(distrCount);
for(int i = 0; i < distrCount; i++)
locations[i] = i;
std::vector<int> contents(distrCount);
for(int i = 0; i < distrCount; i++)
contents[i] = i;
for(int i = 0; i < distrCount; i++) {
// Now we want to copy the correct entry into position i. We also
// need to copy the entry that was occupying this spot to
// somewhere else, and update the locations and contents vectors
// accordingly.
int otherIdx = locations[itemList[i].originalIndex];
// Switch place of distr structs.
DistributionSpecStructLabeled temp = distrList[otherIdx];
distrList[otherIdx] = distrList[i];
distrList[i] = temp;
// Update locations and contents vectors.
int orgIdxToMove = contents[i];
contents[i] = itemList[i].originalIndex;
locations[itemList[i].originalIndex] = i;
contents[otherIdx] = orgIdxToMove;
locations[orgIdxToMove] = otherIdx;
}
return 0;
}
|