1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file integrals_general.cc
@brief General functionality related to computation of integrals
involving Gaussian basis functions.
@author: Elias Rudberg <em>responsible</em>
*/
/* Written by Elias Rudberg, KTH, Stockholm */
#include <stdlib.h>
#include <math.h>
#include <stdio.h>
#include <errno.h>
#include <memory.h>
#include <time.h>
#include <stdarg.h>
#include "memorymanag.h"
#include "pi.h"
#include "output.h"
#include "utilities.h"
#include "boysfunction.h"
#include "integral_info.h"
#include "integrals_general.h"
#define K_MAX_DIM 44
int
multiply_polynomials(ergo_real result[],
polydeg1struct* polydeg1,
int dim,
ergo_real a[])
{
int i;
ergo_real p1[K_MAX_DIM + 1];
ergo_real p2[K_MAX_DIM + 1];
if(dim >= (K_MAX_DIM-1))
return -1;
for(i = 0; i <= dim; i++)
p1[i] = a[i]*polydeg1->a0;
p1[dim+1] = 0;
p2[0] = 0;
for(i = 0; i <= dim; i++)
p2[i+1] = a[i]*polydeg1->a1;
for(i = 0; i <= (dim+1); i++)
result[i] = p1[i] + p2[i];
return 0;
} /* END multiply_polynomials */
/*
get_product_simple_prims
This function calculates the product of two simple primitives.
The result is a list of simple primitives.
*/
int
get_product_simple_prims(const DistributionSpecStruct& primA_in,
const DistributionSpecStruct& primB_in,
DistributionSpecStruct resultList[],
int maxCount,
ergo_real threshold)
{
// Use a coordinate system with primA at the origin.
// This solves the problem with extreme positions of the primitives.
DistributionSpecStruct primA_mod = primA_in;
DistributionSpecStruct primB_mod = primB_in;
int kk;
for(kk = 0; kk < 3; kk++)
{
primA_mod.centerCoords[kk] -= primA_in.centerCoords[kk];
primB_mod.centerCoords[kk] -= primA_in.centerCoords[kk];
}
DistributionSpecStruct* primA = &primA_mod;
DistributionSpecStruct* primB = &primB_mod;
ergo_real CxCyCz, AiAj, alphaNew;
ergo_real newCenter[3];
ergo_real poly0[K_MAX_DIM];
ergo_real poly1[K_MAX_DIM];
ergo_real poly2[K_MAX_DIM];
ergo_real tempPoly[K_MAX_DIM];
ergo_real tempPoly2[K_MAX_DIM];
ergo_real tempPoly3[K_MAX_DIM];
int tempPolyDegree, tempPoly2Degree;
int poly0degree, poly1degree, poly2degree, l, m, nn;
polydeg1struct polyDeg1;
ergo_real* poly;
int* degreePtr;
/* use the Gaussian product rule */
ergo_real sum = 0;
int k;
for(k = 0; k < 3; k++)
{
ergo_real temp = primA->centerCoords[k] - primB->centerCoords[k];
sum += temp * temp;
} /* END FOR k */
CxCyCz = template_blas_exp(-primA->exponent * primB->exponent *
sum / (primA->exponent + primB->exponent));
// FIXME: do this screening properly!
if(template_blas_fabs(CxCyCz) < threshold)
return 0;
AiAj = primA->coeff * primB->coeff;
alphaNew = primA->exponent + primB->exponent;
for(k = 0; k < 3; k++)
{
newCenter[k] =
(primA->exponent * primA->centerCoords[k] +
primB->exponent * primB->centerCoords[k]) /
(primA->exponent + primB->exponent);
} /* END FOR k */
/* do product of polynomials */
/* one coordinate at a time */
for(k = 0; k < 3; k++)
{
switch(k)
{
case 0: poly = poly0; degreePtr = &poly0degree; break;
case 1: poly = poly1; degreePtr = &poly1degree; break;
case 2: poly = poly2; degreePtr = &poly2degree; break;
default: return -1;
} /* END SWITCH k */
tempPoly[0] = 1;
tempPolyDegree = 0;
for(m = 0; m < primA->monomialInts[k]; m++)
{
polyDeg1.a0 = -primA->centerCoords[k];
polyDeg1.a1 = 1;
if(multiply_polynomials(tempPoly2, &polyDeg1,
tempPolyDegree, tempPoly) != 0)
return -1;
tempPolyDegree++;
memcpy(tempPoly,
tempPoly2,
(tempPolyDegree+1)*sizeof(ergo_real));
} /* END FOR m */
for(m = 0; m < primB->monomialInts[k]; m++)
{
polyDeg1.a0 = -primB->centerCoords[k];
polyDeg1.a1 = 1;
if(multiply_polynomials(tempPoly2, &polyDeg1,
tempPolyDegree, tempPoly) != 0)
return -1;
tempPolyDegree++;
memcpy(tempPoly,
tempPoly2,
(tempPolyDegree+1)*sizeof(ergo_real));
} /* END FOR m */
/* now do variable change */
for(m = 0; m < K_MAX_DIM; m++)
poly[m] = 0;
tempPoly2Degree = 0;
for(m = 0; m <= tempPolyDegree; m++)
{
tempPoly2[0] = tempPoly[m];
tempPoly2Degree = 0;
for(l = 0; l < m; l++)
{
polyDeg1.a0 = newCenter[k];
polyDeg1.a1 = 1;
if(multiply_polynomials(tempPoly3,
&polyDeg1,
tempPoly2Degree,
tempPoly2) != 0)
return -1;
tempPoly2Degree++;
memcpy(tempPoly2,
tempPoly3,
(tempPoly2Degree+1)*sizeof(ergo_real));
} /* END FOR l */
for(l = 0; l <= tempPoly2Degree; l++)
{
poly[l] += tempPoly2[l];
} /* END FOR l */
} /* END FOR m */
*degreePtr = tempPoly2Degree;
} /* END FOR k */
nn = 0;
for(k = 0; k <= poly0degree; k++)
{
int l;
for(l = 0; l <= poly1degree; l++)
{
int m;
for(m = 0; m <= poly2degree; m++)
{
ergo_real newCoeff = AiAj * CxCyCz * poly0[k] * poly1[l] * poly2[m];
ergo_real sqrtValue = template_blas_sqrt(pi / alphaNew);
ergo_real absvalue = newCoeff * sqrtValue * sqrtValue * sqrtValue;
if(absvalue < 0) absvalue *= -1;
/* add one function to final list */
resultList[nn].coeff = newCoeff;
resultList[nn].exponent = alphaNew;
memcpy(resultList[nn].centerCoords,
newCenter,
3 * sizeof(ergo_real));
resultList[nn].monomialInts[0] = k;
resultList[nn].monomialInts[1] = l;
resultList[nn].monomialInts[2] = m;
// Translate this term of result back to original coordinate system
for(kk = 0; kk < 3; kk++)
resultList[nn].centerCoords[kk] += primA_in.centerCoords[kk];
nn++;
if(nn >= maxCount)
{
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in get_product_simple_prims: "
"maxCount exceeded");
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "nn = %i, maxCount = %i",
nn, maxCount);
return -1;
}
} /* END FOR m */
} /* END FOR l */
} /* END FOR k */
return nn;
}
int
get_product_simple_primitives(const BasisInfoStruct & basisInfoA, int iA,
const BasisInfoStruct & basisInfoB, int iB,
DistributionSpecStruct resultList[],
int maxCount,
ergo_real threshold)
{
BasisFuncStruct* basisFuncA = &basisInfoA.basisFuncList[iA];
int nPrimsA = basisFuncA->noOfSimplePrimitives;
int Astart = basisFuncA->simplePrimitiveIndex;
BasisFuncStruct* basisFuncB = &basisInfoB.basisFuncList[iB];
int nPrimsB = basisFuncB->noOfSimplePrimitives;
int Bstart = basisFuncB->simplePrimitiveIndex;
int n = 0;
int i;
if((nPrimsA <= 0) || (nPrimsB <= 0))
{
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in get_product_simple_primitives: "
"((nPrimsA <= 0) || (nPrimsB <= 0))\n");
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "nPrimsA = %i, nPrimsB = %i\n", nPrimsA, nPrimsB);
return -1;
}
for(i = 0; i < nPrimsA; i++)
{
const DistributionSpecStruct& primA =
basisInfoA.simplePrimitiveList[Astart + i];
int j;
for(j = 0; j < nPrimsB; j++)
{
const DistributionSpecStruct& primB =
basisInfoB.simplePrimitiveList[Bstart + j];
int nNewPrims = get_product_simple_prims(primA,
primB,
&resultList[n],
maxCount - n,
threshold);
if(nNewPrims < 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in get_product_simple_prims");
return -1;
}
n += nNewPrims;
}
}
return n;
}
ergo_real
compute_integral_of_simple_prim(const DistributionSpecStruct & distr) {
ergo_real result, alpha;
int i, n;
if( ((distr.monomialInts[0]|
distr.monomialInts[1]|
distr.monomialInts[2]) & 1) == 1) /* odd integrals disappear */
return 0;
alpha = distr.exponent;
result = distr.coeff * template_blas_pow((ergo_real)pi/alpha, (ergo_real)1.5);
ergo_real twoA = 2*alpha;
for(i = 0; i < 3; i++) {
n = distr.monomialInts[i];
for(int j=0; j<n; j+=2)
result *= (j+1)/twoA;
} /* END FOR i */
return result;
}
/**
Computes the largest integral of any primitive in the basis set,
when any x y z factors are ignored. This is useful for getting
rough estimates of basis function extents.
*/
ergo_real
get_largest_simple_integral(const BasisInfoStruct & basisInfo)
{
int n = basisInfo.noOfBasisFuncs;
ergo_real A = 0;
int i;
for(i = 0; i < n; i++)
{
BasisFuncStruct* basisFunc = &basisInfo.basisFuncList[i];
int nPrims = basisFunc->noOfSimplePrimitives;
int start = basisFunc->simplePrimitiveIndex;
int j;
for(j = 0; j < nPrims; j++)
{
DistributionSpecStruct* prim = &basisInfo.simplePrimitiveList[start + j];
DistributionSpecStruct distr;
distr = *prim;
// Set monomialInts to zero to simplify things
distr.monomialInts[0] = 0;
distr.monomialInts[1] = 0;
distr.monomialInts[2] = 0;
ergo_real a = compute_integral_of_simple_prim(distr);
if(a > A)
A = a;
} // END FOR j
} // END FOR i
return A;
}
/**
Computes an estimate for the largest absolute value that any basis
function takes. Useful as "worst case" when you want to find out
the largest contribution to the density that a basis function can
be part of. */
ergo_real get_max_basis_func_abs_value(const BasisInfoStruct & basisInfo) {
int n = basisInfo.noOfBasisFuncs;
ergo_real maxValue = 0;
for(int i = 0; i < n; i++) {
BasisFuncStruct* basisFunc = &basisInfo.basisFuncList[i];
int nPrims = basisFunc->noOfSimplePrimitives;
int start = basisFunc->simplePrimitiveIndex;
for(int j = 0; j < nPrims; j++) {
DistributionSpecStruct* prim = &basisInfo.simplePrimitiveList[start + j];
ergo_real valueAtCenter = template_blas_fabs(prim->coeff); // exp(0) = 1
if(valueAtCenter > maxValue)
maxValue = valueAtCenter;
} // END FOR j
} // END FOR i
return maxValue;
}
/**
Computes an "extent" for each basis function in the basis set.
The "extent" is such that the value of the function is smaller
than maxAbsValue at distances beyond the "extent".
*/
int
get_basis_func_extent_list(const BasisInfoStruct & basisInfo, ergo_real* basisFuncExtentList, ergo_real maxAbsValue)
{
int n = basisInfo.noOfBasisFuncs;
for(int i = 0; i < n; i++)
{
BasisFuncStruct* basisFunc = &basisInfo.basisFuncList[i];
int nPrims = basisFunc->noOfSimplePrimitives;
int start = basisFunc->simplePrimitiveIndex;
ergo_real maxExtent = 0;
for(int j = 0; j < nPrims; j++)
{
DistributionSpecStruct* prim = &basisInfo.simplePrimitiveList[start + j];
ergo_real currExtent = template_blas_sqrt((1.0 / prim->exponent) * template_blas_log(template_blas_fabs(prim->coeff) / maxAbsValue));
if(currExtent > maxExtent)
maxExtent = currExtent;
} // END FOR j
basisFuncExtentList[i] = maxExtent;
} // END FOR i
return 0;
}
|