1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file mm_limit_table.cc
@brief MMLimitTable class used to predict the magnitude of
contributions when using truncated multipole expansions.
@author: Elias Rudberg <em>responsible</em>
*/
#include <stdio.h>
#include <vector>
#include <limits>
#include <stdexcept>
#include "mm_limit_table.h"
#include "matrix_norm.h"
#include "template_blas_basicmath.h"
#include "multipole.h"
const ergo_real HUGE_REAL_NUMBER = template_blas_sqrt(template_blas_get_num_limit_max<ergo_real>()) / 100;
const ergo_real INITIAL_STEP = 0.5;
const ergo_real RANGE_STEP_DIFF_FACTOR = 0.25;
const ergo_real MAX_ALLOWED_DISTANCE = 1e5;
MMLimitTable::MMLimitTable()
{
noOfRangesUsed = 0;
}
MMLimitTable::~MMLimitTable()
{
}
void MMLimitTable::inittt(const MultipolePrepManager & multipolePrep)
{
ergo_real maxDistance_input = MAX_ALLOWED_DISTANCE;
ergo_real maxDistance = maxDistance_input + 0.1; // ELIAS NOTE 2013-11-29: add small value here to avoid problems at exactly the maxDistance_input distance.
ergo_real r = 0;
ergo_real currStep = INITIAL_STEP;
int rangeCount = 0;
const int NO_OF_SAMPLE_POINTS = 7;
ergo_real dxlist[NO_OF_SAMPLE_POINTS][3];
dxlist[0][0] = 1;
dxlist[0][1] = 0;
dxlist[0][2] = 0;
dxlist[1][0] = 0;
dxlist[1][1] = 1;
dxlist[1][2] = 0;
dxlist[2][0] = 0;
dxlist[2][1] = 0;
dxlist[2][2] = 1;
dxlist[3][0] = 1;
dxlist[3][1] = 1;
dxlist[3][2] = 0;
dxlist[4][0] = 1;
dxlist[4][1] = 0;
dxlist[4][2] = 1;
dxlist[5][0] = 0;
dxlist[5][1] = 1;
dxlist[5][2] = 1;
dxlist[6][0] = 1;
dxlist[6][1] = 1;
dxlist[6][2] = 1;
MMInteractor interactor(multipolePrep);
while(r < maxDistance)
{
interaction_matrix_limit_range_struct & range = rangeList[rangeCount];
range.startDistance = r;
range.step = currStep;
for(int i = 0; i < NO_OF_STEPS_PER_RANGE; i++)
{
r = range.startDistance + i*range.step;
range.maxDistance = r + range.step;
for(int l_large = 0; l_large <= MAX_MULTIPOLE_DEGREE; l_large++)
for(int l_small = 0; l_small <= MAX_MULTIPOLE_DEGREE_BASIC; l_small++)
range.list[i].x[l_large][l_small] = 0;
for(int randloop = 0; randloop < NO_OF_SAMPLE_POINTS; randloop++)
{
ergo_real dx = dxlist[randloop][0];
ergo_real dy = dxlist[randloop][1];
ergo_real dz = dxlist[randloop][2];
ergo_real norm = template_blas_sqrt(dx*dx+dy*dy+dz*dz);
dx *= r / norm;
dy *= r / norm;
dz *= r / norm;
ergo_real T[MAX_NO_OF_MOMENTS_PER_MULTIPOLE_BASIC*MAX_NO_OF_MOMENTS_PER_MULTIPOLE];
if(r > 0) {
interactor.getInteractionMatrix(dx, dy, dz,
MAX_MULTIPOLE_DEGREE_BASIC,
MAX_MULTIPOLE_DEGREE, T);
}
else
{
// For r=0 use huge values for all elements in T.
for(int k = 0; k < MAX_NO_OF_MOMENTS_PER_MULTIPOLE_BASIC*MAX_NO_OF_MOMENTS_PER_MULTIPOLE; k++)
T[k] = HUGE_REAL_NUMBER;
}
// Compute norms for submatrices of T
for(int l_large = 0; l_large <= MAX_MULTIPOLE_DEGREE; l_large++)
{
int startIndex_large = l_large*l_large;
int endIndex_large = (l_large+1)*(l_large+1);
int n_large = endIndex_large - startIndex_large;
for(int l_small = 0; l_small <= MAX_MULTIPOLE_DEGREE_BASIC; l_small++)
{
int startIndex_small = l_small*l_small;
int endIndex_small = (l_small+1)*(l_small+1);
int n_small = endIndex_small - startIndex_small;
ergo_real T_sub[n_small*n_large];
for(int ii = 0; ii < n_large; ii++)
for(int jj = 0; jj < n_small; jj++)
T_sub[ii*n_small+jj] = T[(startIndex_small+jj)*MAX_NO_OF_MOMENTS_PER_MULTIPOLE+startIndex_large+ii];
ergo_real matrixNorm = get_euclidean_norm(n_large, n_small, T_sub);
if(matrixNorm > range.list[i].x[l_large][l_small])
range.list[i].x[l_large][l_small] = matrixNorm;
} // END FOR l_small
} // END FOR l_large
} // END FOR randloop
} // END FOR i
currStep = r * RANGE_STEP_DIFF_FACTOR;
rangeCount++;
if(rangeCount >= NO_OF_RANGES)
throw "error in MMLimitTable::Init: (rangeCount >= NO_OF_RANGES)";
} // END WHILE
noOfRangesUsed = rangeCount;
}
const MMLimitTable::interaction_matrix_limit_struct & MMLimitTable::get_x_from_distance(ergo_real distance) const
{
if(distance < 0)
throw "Error in MMLimitTable::get_x_from_distance(): (distance < 0).";
int rangeIndex = 0;
while(rangeList[rangeIndex].maxDistance <= distance) // ELIAS NOTE 2013-11-29: changed from "<" to "<=" here to fix problem found by Anastasia, for case when (distanceLeft / range.step) divides evenly.
{
rangeIndex++;
if(rangeIndex >= noOfRangesUsed)
throw "error in MMLimitTable::get_x_from_distance: (rangeIndex >= noOfRangesUsed)";
}
const interaction_matrix_limit_range_struct & range = rangeList[rangeIndex];
ergo_real distanceLeft = distance - range.startDistance;
int i = (int)(distanceLeft / range.step);
if(i < 0 || i >= NO_OF_STEPS_PER_RANGE)
{
if(i < 0)
throw "error in MMLimitTable::get_x_from_distance: i < 0";
throw "error in MMLimitTable::get_x_from_distance: i >= NO_OF_STEPS_PER_RANGE";
}
const interaction_matrix_limit_struct & x = range.list[i];
return x;
}
ergo_real MMLimitTable::get_max_abs_mm_contrib(int degree1,
const ergo_real* maxMomentVectorNormList1,
int degree2,
const ergo_real* maxMomentVectorNormList2,
ergo_real distance) const
{
ergo_real maxAbsContributionFromMultipole = 0;
// Get worst-case interaction matrix limits
const interaction_matrix_limit_struct & x = get_x_from_distance(distance);
for(int l_large = degree1; l_large >= 0; l_large--)
{
ergo_real contribThisDegree = 0;
for(int l_small = 0; l_small <= degree2; l_small++)
{
contribThisDegree +=
maxMomentVectorNormList1[l_small] *
maxMomentVectorNormList2[l_large] *
x.x[l_large][l_small];
} // END FOR l_small
maxAbsContributionFromMultipole += contribThisDegree;
} // END FOR l_large
return maxAbsContributionFromMultipole;
}
int MMLimitTable::get_minimum_multipole_degree_needed(ergo_real distance,
const multipole_struct_large* boxMultipole,
int maxDegreeForDistrs,
const ergo_real* maxMomentVectorNormForDistrsList,
ergo_real threshold) const
{
// Get worst-case interaction matrix limits
const interaction_matrix_limit_struct & x = get_x_from_distance(distance);
ergo_real maxAbsContribution = 0;
int degreeNeeded = boxMultipole->degree;
for(int l_large = boxMultipole->degree; l_large >= 0; l_large--)
{
degreeNeeded = l_large;
ergo_real contribThisDegree = 0;
for(int l_small = 0; l_small <= maxDegreeForDistrs; l_small++)
{
contribThisDegree +=
maxMomentVectorNormForDistrsList[l_small] *
boxMultipole->euclideanNormList[l_large] *
x.x[l_large][l_small];
} // END FOR l_small
maxAbsContribution += contribThisDegree;
if(maxAbsContribution > threshold)
break;
} // END FOR l_large
return degreeNeeded;
}
void MMLimitTable::write_to_buffer ( char * dataBuffer, size_t const bufferSize ) const {
char* p = dataBuffer;
if(bufferSize < get_size())
throw std::runtime_error("Error in MMLimitTable::write_to_buffer: bufferSize too small.");
memcpy(p, this, sizeof(MMLimitTable));
}
size_t MMLimitTable::get_size() const {
return sizeof(MMLimitTable);
}
void MMLimitTable::assign_from_buffer ( char const * dataBuffer, size_t const bufferSize) {
const char* p = dataBuffer;
if(bufferSize < sizeof(MMLimitTable))
throw std::runtime_error("Error in MMLimitTable::assign_from_buffer: bufferSize too small.");
memcpy(this, p, sizeof(MMLimitTable));
}
|