1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file multipole.cc
@brief Code for computing multipole moments, and multipole
interaction and translation matrices.
@author: Elias Rudberg <em>responsible</em>
*/
#include <memory.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "multipole.h"
#include "output.h"
#include "integrals_general.h"
int
compute_multipole_moments(const IntegralInfo& integralInfo,
const DistributionSpecStruct* distr,
multipole_struct_small* result)
{
int l = 0;
int funcCountCurr_l = 0;
int distrDegree = 0;
for(int k = 0; k < 3; k++)
distrDegree += distr->monomialInts[k];
result->noOfMoments = 0;
memset(result, 0, sizeof(multipole_struct_small));
for(int i = 0; i < MAX_NO_OF_MOMENTS_PER_MULTIPOLE_BASIC; i++) {
// get polynomial for scaled solid harmonic function
if(i >= integralInfo.no_of_basis_func_polys)
throw "Error in compute_multipole_moments: (i >= integralInfo.no_of_basis_func_polys).";
const basis_func_poly_struct* curr = &integralInfo.basis_func_poly_list[i];
// do one term at a time
ergo_real sum = 0;
int savedDegree = -1;
for(int j = 0; j < curr->noOfTerms; j++) {
DistributionSpecStruct prim = *distr;
int termDegree = 0;
for(int k = 0; k < 3; k++) {
prim.monomialInts[k] += curr->termList[j].monomialInts[k];
termDegree += curr->termList[j].monomialInts[k];
}
// check degree
if(j > 0) {
if(termDegree != savedDegree)
throw "Error in compute_multipole_moments: (termDegree != savedDegree).";
}
savedDegree = termDegree;
prim.coeff *= curr->termList[j].coeff;
sum += compute_integral_of_simple_prim(prim);
} // END FOR j
if(savedDegree <= distrDegree) {
result->noOfMoments++;
result->momentList[i] = curr->scaledSolidHarmonicPrefactor * sum;
}
else
{
// now the computed moment should be zero
if(template_blas_fabs(sum) > 1e-3) {
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error: computed moment not zero when (savedDegree > distrDegree)");
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "computed moment : %22.11f", (double)sum);
exit(EXIT_FAILURE);
}
result->momentList[i] = 0;
}
funcCountCurr_l++;
if(funcCountCurr_l == 2*l+1) {
l++;
funcCountCurr_l = 0;
}
} // END FOR i
if(distrDegree > MAX_MULTIPOLE_DEGREE_BASIC) {
// This should not happen, really, but for testing purposes it is nice to be able to set
// MAX_MULTIPOLE_DEGREE_BASIC to be lower than needed to describe product distributions correctly.
// The accuracy will then be bad, but the program should still work.
result->degree = MAX_MULTIPOLE_DEGREE_BASIC;
}
else
result->degree = distrDegree;
for(int k = 0; k < 3; k++)
result->centerCoords[k] = distr->centerCoords[k];
return 0;
}
MMTranslator::MMTranslator(const MultipolePrepManager & multipolePrepManager)
: multipolePrep(multipolePrepManager)
{
buffer_W_cc = new ergo_real[MMDP1*MMDP1*MMDP1*MMDP1];
buffer_W_cs = new ergo_real[MMDP1*MMDP1*MMDP1*MMDP1];
buffer_W_sc = new ergo_real[MMDP1*MMDP1*MMDP1*MMDP1];
buffer_W_ss = new ergo_real[MMDP1*MMDP1*MMDP1*MMDP1];
}
MMTranslator::~MMTranslator()
{
delete []buffer_W_cc;
delete []buffer_W_cs;
delete []buffer_W_sc;
delete []buffer_W_ss;
}
int
MMTranslator::getTranslationMatrix(ergo_real dx,
ergo_real dy,
ergo_real dz,
int l_1,
int l_2,
ergo_real* result_W) const
{
assert(multipolePrep.is_initialized());
ergo_real r2 = dx*dx + dy*dy + dz*dz;
const MultipolePrepManager::l_m_struct* l_m_list = multipolePrep.get_l_m_list_ptr();
// generate values of all needed "scaled regular solid harmonics"
int largest_l_needed = MAX_MULTIPOLE_DEGREE;
int noOf_l_values = largest_l_needed + 1;
int L = noOf_l_values;
ergo_real R_c[L][L];
ergo_real R_s[L][L];
R_c[0][0] = 1;
R_s[0][0] = 0;
// generate all R_c and R_s with l = m
for(int l = 0; l < L-1; l++) {
R_c[l+1][l+1] = -(dx * R_c[l][l] - dy * R_s[l][l]) / (2*l+2);
R_s[l+1][l+1] = -(dy * R_c[l][l] + dx * R_s[l][l]) / (2*l+2);
}
// generate all R_c and R_s with l > m
for(int l = 0; l < L-1; l++) {
for(int m = 0; m <= l; m++) {
ergo_real R_c_lmin1m = 0;
ergo_real R_s_lmin1m = 0;
if(l > 0 && m < l) {
R_c_lmin1m = R_c[l-1][m];
R_s_lmin1m = R_s[l-1][m];
}
R_c[l+1][m] = ((2*l+1)*dz*R_c[l][m] - r2*R_c_lmin1m) / ((l + m + 1) * (l - m + 1));
R_s[l+1][m] = ((2*l+1)*dz*R_s[l][m] - r2*R_s_lmin1m) / ((l + m + 1) * (l - m + 1));
}
}
ergo_real m1topowlist[MAX_MULTIPOLE_DEGREE+1];
m1topowlist[0] = 1;
for(int k = 1; k <= MAX_MULTIPOLE_DEGREE; k++)
m1topowlist[k] = m1topowlist[k-1] * -1;
ergo_real onehalftopowlist[2];
onehalftopowlist[0] = 1.0;
onehalftopowlist[1] = 0.5;
// Use R_c and R_s values to generate translation matrix
ergo_real (*W_cc)[MMDP1][MMDP1][MMDP1] = (ergo_real(*)[MMDP1][MMDP1][MMDP1])buffer_W_cc;
ergo_real (*W_cs)[MMDP1][MMDP1][MMDP1] = (ergo_real(*)[MMDP1][MMDP1][MMDP1])buffer_W_cs;
ergo_real (*W_sc)[MMDP1][MMDP1][MMDP1] = (ergo_real(*)[MMDP1][MMDP1][MMDP1])buffer_W_sc;
ergo_real (*W_ss)[MMDP1][MMDP1][MMDP1] = (ergo_real(*)[MMDP1][MMDP1][MMDP1])buffer_W_ss;
for(int l = 0; l <= l_1; l++)
for(int j = 0; j <= l_2; j++)
for(int m = 0; m <= l; m++)
for(int k = 0; k <= j; k++) {
ergo_real R_c_lmjmmk = 0;
ergo_real R_s_lmjmmk = 0;
ergo_real R_c_lmjmpk = 0;
ergo_real R_s_lmjmpk = 0;
int lmj = l - j;
int mmk = m - k;
int mpk = m + k;
if(lmj >= 0) {
if(mmk >= -lmj && mmk <= lmj) {
if(mmk >= 0) {
R_c_lmjmmk = R_c[lmj][mmk];
R_s_lmjmmk = R_s[lmj][mmk];
}
else {
R_c_lmjmmk = m1topowlist[-mmk] * R_c[lmj][-mmk];
R_s_lmjmmk = -m1topowlist[-mmk] * R_s[lmj][-mmk];
}
}
if(mpk >= -lmj && mpk <= lmj) {
if(mpk >= 0) {
R_c_lmjmpk = R_c[lmj][mpk];
R_s_lmjmpk = R_s[lmj][mpk];
}
else {
R_c_lmjmpk = m1topowlist[-mpk] * R_c[lmj][-mpk];
R_s_lmjmpk = -m1topowlist[-mpk] * R_s[lmj][-mpk];
}
}
}
int dk0 = 0;
if(k == 0)
dk0 = 1;
W_cc[l][m][j][k] = onehalftopowlist[dk0] * ( R_c_lmjmmk + m1topowlist[k] * R_c_lmjmpk);
W_cs[l][m][j][k] = (-R_s_lmjmmk + m1topowlist[k] * R_s_lmjmpk);
W_sc[l][m][j][k] = onehalftopowlist[dk0] * ( R_s_lmjmmk + m1topowlist[k] * R_s_lmjmpk);
W_ss[l][m][j][k] = ( R_c_lmjmmk - m1topowlist[k] * R_c_lmjmpk);
} // END FOR l j m k
int noOfMoments_1 = (l_1+1)*(l_1+1);
int noOfMoments_2 = (l_2+1)*(l_2+1);
for(int A = 0; A < noOfMoments_1; A++)
for(int B = 0; B < noOfMoments_2; B++)
{
int l = l_m_list[A].l;
int m = l_m_list[A].m;
int j = l_m_list[B].l;
int k = l_m_list[B].m;
result_W[A*noOfMoments_2+B] = 0;
if(m >= 0 && k >= 0)
result_W[A*noOfMoments_2+B] = W_cc[l][m][j][k];
if(m >= 0 && k < 0)
result_W[A*noOfMoments_2+B] = W_cs[l][m][j][-k];
if(m < 0 && k >= 0)
result_W[A*noOfMoments_2+B] = W_sc[l][-m][j][k];
if(m < 0 && k < 0)
result_W[A*noOfMoments_2+B] = W_ss[l][-m][j][-k];
result_W[A*noOfMoments_2+B] *= multipolePrep.get_lm_factor(j, k) / multipolePrep.get_lm_factor(l, m);
}
return 0;
}
MMInteractor::MMInteractor(const MultipolePrepManager & multipolePrepManager)
: multipolePrep(multipolePrepManager)
{
buffer_T_cc = new ergo_real[MMDP1*MMDP1*MMDP1*MMDP1];
buffer_T_cs = new ergo_real[MMDP1*MMDP1*MMDP1*MMDP1];
buffer_T_sc = new ergo_real[MMDP1*MMDP1*MMDP1*MMDP1];
buffer_T_ss = new ergo_real[MMDP1*MMDP1*MMDP1*MMDP1];
}
MMInteractor::~MMInteractor()
{
delete [] buffer_T_cc;
delete [] buffer_T_cs;
delete [] buffer_T_sc;
delete [] buffer_T_ss;
}
int
MMInteractor::getInteractionMatrix(ergo_real dx,
ergo_real dy,
ergo_real dz,
int l_1,
int l_2,
ergo_real* result_T)
{
assert(multipolePrep.is_initialized());
ergo_real r2 = dx*dx + dy*dy + dz*dz;
ergo_real oneOverR2 = (ergo_real)1 / r2;
ergo_real oneOverR = template_blas_sqrt(oneOverR2);
const MultipolePrepManager::l_m_struct* l_m_list = multipolePrep.get_l_m_list_ptr();
// generate values of all needed "scaled irregular solid harmonics"
//int largest_l_needed = distrMultipole->degree + otherMultipole->degree;
int largest_l_needed = (2*MAX_MULTIPOLE_DEGREE);
int noOf_l_values = largest_l_needed + 1;
int L = noOf_l_values;
ergo_real I_c[L][L];
ergo_real I_s[L][L];
I_c[0][0] = oneOverR;
I_s[0][0] = 0;
int LL = l_1 + l_2;
// generate all I_c and I_s with l = m
for(int l = 0; l < LL; l++) {
I_c[l+1][l+1] = -(2*l + 1) * oneOverR2 * (dx * I_c[l][l] - dy * I_s[l][l]);
I_s[l+1][l+1] = -(2*l + 1) * oneOverR2 * (dy * I_c[l][l] + dx * I_s[l][l]);
}
// generate all I_c and I_s with l > m
for(int l = 0; l < LL; l++) {
for(int m = 0; m <= l; m++) {
ergo_real I_c_lmin1m = 0;
ergo_real I_s_lmin1m = 0;
if(l > 0 && m < l) {
I_c_lmin1m = I_c[l-1][m];
I_s_lmin1m = I_s[l-1][m];
}
I_c[l+1][m] = oneOverR2 * ((2*l+1)*dz*I_c[l][m] - (l*l - m*m)*I_c_lmin1m);
I_s[l+1][m] = oneOverR2 * ((2*l+1)*dz*I_s[l][m] - (l*l - m*m)*I_s_lmin1m);
}
}
ergo_real m1topowlist[MAX_MULTIPOLE_DEGREE+1];
m1topowlist[0] = 1;
for(int k = 1; k <= MAX_MULTIPOLE_DEGREE; k++)
m1topowlist[k] = m1topowlist[k-1] * -1;
ergo_real onehalftopowlist[3];
onehalftopowlist[0] = 1.0;
onehalftopowlist[1] = 0.5;
onehalftopowlist[2] = 0.25;
// Use I_c and I_s values to generate Interaction matrix
const int MMDP1 = MAX_MULTIPOLE_DEGREE+1;
ergo_real (*T_cc)[MMDP1][MMDP1][MMDP1] = (ergo_real(*)[MMDP1][MMDP1][MMDP1])buffer_T_cc;
ergo_real (*T_cs)[MMDP1][MMDP1][MMDP1] = (ergo_real(*)[MMDP1][MMDP1][MMDP1])buffer_T_cs;
ergo_real (*T_sc)[MMDP1][MMDP1][MMDP1] = (ergo_real(*)[MMDP1][MMDP1][MMDP1])buffer_T_sc;
ergo_real (*T_ss)[MMDP1][MMDP1][MMDP1] = (ergo_real(*)[MMDP1][MMDP1][MMDP1])buffer_T_ss;
for(int l = 0; l <= l_1; l++)
for(int j = 0; j <= l_2; j++)
for(int m = 0; m <= l; m++)
for(int k = 0; k <= j; k++) {
ergo_real I_c_lpjmmk;
ergo_real I_s_lpjmmk;
if(m >= k) {
I_c_lpjmmk = I_c[l+j][m-k];
I_s_lpjmmk = I_s[l+j][m-k];
}
else {
I_c_lpjmmk = m1topowlist[k-m] * I_c[l+j][k-m];
I_s_lpjmmk = -m1topowlist[k-m] * I_s[l+j][k-m];
}
int dm0 = 0;
int dk0 = 0;
if(m == 0)
dm0 = 1;
if(k == 0)
dk0 = 1;
ergo_real commonPreFactor = m1topowlist[j] * onehalftopowlist[dm0 + dk0] * 2;
ergo_real m1topowk = m1topowlist[k];
ergo_real I_c_lpjmpk = I_c[l+j][m+k];
ergo_real I_s_lpjmpk = I_s[l+j][m+k];
T_cc[l][m][j][k] = commonPreFactor * ( I_c_lpjmpk + m1topowk * I_c_lpjmmk);
T_cs[l][m][j][k] = commonPreFactor * ( I_s_lpjmpk - m1topowk * I_s_lpjmmk);
T_sc[l][m][j][k] = commonPreFactor * ( I_s_lpjmpk + m1topowk * I_s_lpjmmk);
T_ss[l][m][j][k] = commonPreFactor * (-I_c_lpjmpk + m1topowk * I_c_lpjmmk);
} // END FOR l j m k
int noOfMoments_1 = (l_1+1)*(l_1+1);
int noOfMoments_2 = (l_2+1)*(l_2+1);
for(int A = 0; A < noOfMoments_1; A++)
for(int B = 0; B < noOfMoments_2; B++) {
int l = l_m_list[A].l;
int m = l_m_list[A].m;
int j = l_m_list[B].l;
int k = l_m_list[B].m;
result_T[A*noOfMoments_2+B] = 0;
if(m >= 0 && k >= 0)
result_T[A*noOfMoments_2+B] = T_cc[l][m][j][k];
if(m >= 0 && k < 0)
result_T[A*noOfMoments_2+B] = T_cs[l][m][j][-k];
if(m < 0 && k >= 0)
result_T[A*noOfMoments_2+B] = T_sc[l][-m][j][k];
if(m < 0 && k < 0)
result_T[A*noOfMoments_2+B] = T_ss[l][-m][j][-k];
result_T[A*noOfMoments_2+B] *= multipolePrep.get_lm_factor(l, m) * multipolePrep.get_lm_factor(j, k);
}
return 0;
}
int
setup_multipole_maxAbsMomentList(multipole_struct_large* multipole) {
ergo_real largestAbsMomentSoFar = 0;
for(int degree = MAX_MULTIPOLE_DEGREE; degree >= 0; degree--) {
int startIndex = degree*degree;
int endIndex = (degree+1)*(degree+1);
ergo_real sumOfSquares = 0;
for(int i = startIndex; i < endIndex; i++) {
ergo_real absMoment = template_blas_fabs(multipole->momentList[i]);
if(absMoment > largestAbsMomentSoFar)
largestAbsMomentSoFar = absMoment;
sumOfSquares += absMoment * absMoment;
}
multipole->maxAbsMomentList[degree] = largestAbsMomentSoFar;
multipole->euclideanNormList[degree] = template_blas_sqrt(sumOfSquares);
} // END FOR degree
return 0;
}
|