File: multipole.cc

package info (click to toggle)
ergo 3.8.2-1.1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 17,568 kB
  • sloc: cpp: 94,763; ansic: 17,785; sh: 10,701; makefile: 1,403; yacc: 127; lex: 116; awk: 23
file content (437 lines) | stat: -rw-r--r-- 13,993 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */

/** @file multipole.cc

    @brief Code for computing multipole moments, and multipole
    interaction and translation matrices.

    @author: Elias Rudberg <em>responsible</em>
*/

#include <memory.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#include "multipole.h"
#include "output.h"
#include "integrals_general.h"


int
compute_multipole_moments(const IntegralInfo& integralInfo, 
			  const DistributionSpecStruct* distr,
			  multipole_struct_small* result)
{
  int l = 0;
  int funcCountCurr_l = 0;

  int distrDegree = 0;
  for(int k = 0; k < 3; k++)
    distrDegree += distr->monomialInts[k];

  result->noOfMoments = 0;

  memset(result, 0, sizeof(multipole_struct_small));

  for(int i = 0; i < MAX_NO_OF_MOMENTS_PER_MULTIPOLE_BASIC; i++) {
    // get polynomial for scaled solid harmonic function
    if(i >= integralInfo.no_of_basis_func_polys) 
      throw "Error in compute_multipole_moments: (i >= integralInfo.no_of_basis_func_polys).";
    const basis_func_poly_struct* curr = &integralInfo.basis_func_poly_list[i];

    // do one term at a time
    ergo_real sum = 0;
    int savedDegree = -1;
    for(int j = 0; j < curr->noOfTerms; j++) {
      DistributionSpecStruct prim = *distr;
      int termDegree = 0;
      for(int k = 0; k < 3; k++) {
	prim.monomialInts[k] += curr->termList[j].monomialInts[k];
	termDegree += curr->termList[j].monomialInts[k];
      }
      // check degree
      if(j > 0) {
	if(termDegree != savedDegree)
	  throw "Error in compute_multipole_moments: (termDegree != savedDegree).";
      }
      savedDegree = termDegree;
      prim.coeff *= curr->termList[j].coeff;
      sum += compute_integral_of_simple_prim(prim);
    } // END FOR j

    if(savedDegree <= distrDegree) {
      result->noOfMoments++;
      result->momentList[i] = curr->scaledSolidHarmonicPrefactor * sum;
    }
    else
      {
	// now the computed moment should be zero
	if(template_blas_fabs(sum) > 1e-3) {
	  do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error: computed moment not zero when (savedDegree > distrDegree)");
	  do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "computed moment : %22.11f", (double)sum);
	  exit(EXIT_FAILURE);
	}
	result->momentList[i] = 0;
      }

    funcCountCurr_l++;
    if(funcCountCurr_l == 2*l+1) {
      l++;
      funcCountCurr_l = 0;
    }
  } // END FOR i

  if(distrDegree > MAX_MULTIPOLE_DEGREE_BASIC) {
    // This should not happen, really, but for testing purposes it is nice to be able to set
    // MAX_MULTIPOLE_DEGREE_BASIC to be lower than needed to describe product distributions correctly.
    // The accuracy will then be bad, but the program should still work.
    result->degree = MAX_MULTIPOLE_DEGREE_BASIC;
  }
  else
    result->degree = distrDegree;

  for(int k = 0; k < 3; k++)
    result->centerCoords[k] = distr->centerCoords[k];
  
  return 0;
}


MMTranslator::MMTranslator(const MultipolePrepManager & multipolePrepManager)
  : multipolePrep(multipolePrepManager)
{
  buffer_W_cc = new ergo_real[MMDP1*MMDP1*MMDP1*MMDP1];
  buffer_W_cs = new ergo_real[MMDP1*MMDP1*MMDP1*MMDP1];
  buffer_W_sc = new ergo_real[MMDP1*MMDP1*MMDP1*MMDP1];
  buffer_W_ss = new ergo_real[MMDP1*MMDP1*MMDP1*MMDP1];
}

MMTranslator::~MMTranslator()
{
  delete []buffer_W_cc;
  delete []buffer_W_cs;
  delete []buffer_W_sc;
  delete []buffer_W_ss;
}

int
MMTranslator::getTranslationMatrix(ergo_real dx,
                                   ergo_real dy,
                                   ergo_real dz,
                                   int l_1,
                                   int l_2,
                                   ergo_real* result_W) const
{
  assert(multipolePrep.is_initialized());
  ergo_real r2 = dx*dx + dy*dy + dz*dz;

  const MultipolePrepManager::l_m_struct* l_m_list = multipolePrep.get_l_m_list_ptr();

  // generate values of all needed "scaled regular solid harmonics"
  int largest_l_needed = MAX_MULTIPOLE_DEGREE;

  int noOf_l_values = largest_l_needed + 1;
  int L = noOf_l_values;
  ergo_real R_c[L][L];
  ergo_real R_s[L][L];
  
  R_c[0][0] = 1;
  R_s[0][0] = 0;

  // generate all R_c and R_s with l = m
  for(int l = 0; l < L-1; l++) {
    R_c[l+1][l+1] = -(dx * R_c[l][l] - dy * R_s[l][l]) / (2*l+2);
    R_s[l+1][l+1] = -(dy * R_c[l][l] + dx * R_s[l][l]) / (2*l+2);
  }
  // generate all R_c and R_s with l > m
  for(int l = 0; l < L-1; l++) {
    for(int m = 0; m <= l; m++) {
      ergo_real R_c_lmin1m = 0;
      ergo_real R_s_lmin1m = 0;
      if(l > 0 && m < l) {
	R_c_lmin1m = R_c[l-1][m];
	R_s_lmin1m = R_s[l-1][m];
      }
      R_c[l+1][m] = ((2*l+1)*dz*R_c[l][m] - r2*R_c_lmin1m) / ((l + m + 1) * (l - m + 1));
      R_s[l+1][m] = ((2*l+1)*dz*R_s[l][m] - r2*R_s_lmin1m) / ((l + m + 1) * (l - m + 1));
    }
  }

  ergo_real m1topowlist[MAX_MULTIPOLE_DEGREE+1];
  m1topowlist[0] = 1;
  for(int k = 1; k <= MAX_MULTIPOLE_DEGREE; k++)
    m1topowlist[k] = m1topowlist[k-1] * -1;
  ergo_real onehalftopowlist[2];
  onehalftopowlist[0] = 1.0;
  onehalftopowlist[1] = 0.5;

  // Use R_c and R_s values to generate translation matrix
  ergo_real (*W_cc)[MMDP1][MMDP1][MMDP1] = (ergo_real(*)[MMDP1][MMDP1][MMDP1])buffer_W_cc;
  ergo_real (*W_cs)[MMDP1][MMDP1][MMDP1] = (ergo_real(*)[MMDP1][MMDP1][MMDP1])buffer_W_cs;
  ergo_real (*W_sc)[MMDP1][MMDP1][MMDP1] = (ergo_real(*)[MMDP1][MMDP1][MMDP1])buffer_W_sc;
  ergo_real (*W_ss)[MMDP1][MMDP1][MMDP1] = (ergo_real(*)[MMDP1][MMDP1][MMDP1])buffer_W_ss;

  for(int l = 0; l <= l_1; l++)
    for(int j = 0; j <= l_2; j++)
      for(int m = 0; m <= l; m++)
	for(int k = 0; k <= j; k++) {
	  ergo_real R_c_lmjmmk = 0;
	  ergo_real R_s_lmjmmk = 0;
	  ergo_real R_c_lmjmpk = 0;
	  ergo_real R_s_lmjmpk = 0;
	  int lmj = l - j;
	  int mmk = m - k;
	  int mpk = m + k;
	  if(lmj >= 0) {
	    if(mmk >= -lmj && mmk <= lmj) {
	      if(mmk >= 0) {
		R_c_lmjmmk = R_c[lmj][mmk];
		R_s_lmjmmk = R_s[lmj][mmk];
	      }
	      else {
		R_c_lmjmmk =  m1topowlist[-mmk] * R_c[lmj][-mmk];
		R_s_lmjmmk = -m1topowlist[-mmk] * R_s[lmj][-mmk];
	      }
	    }
	    if(mpk >= -lmj && mpk <= lmj) {
	      if(mpk >= 0) {
		R_c_lmjmpk = R_c[lmj][mpk];
		R_s_lmjmpk = R_s[lmj][mpk];
	      }
	      else {
		R_c_lmjmpk =  m1topowlist[-mpk] * R_c[lmj][-mpk];
		R_s_lmjmpk = -m1topowlist[-mpk] * R_s[lmj][-mpk];
	      }
	    }
	  }

	  int dk0 = 0;
	  if(k == 0)
	    dk0 = 1;

	  W_cc[l][m][j][k] = onehalftopowlist[dk0] * ( R_c_lmjmmk + m1topowlist[k] * R_c_lmjmpk);
	  W_cs[l][m][j][k] =                         (-R_s_lmjmmk + m1topowlist[k] * R_s_lmjmpk);
	  W_sc[l][m][j][k] = onehalftopowlist[dk0] * ( R_s_lmjmmk + m1topowlist[k] * R_s_lmjmpk);
	  W_ss[l][m][j][k] =                         ( R_c_lmjmmk - m1topowlist[k] * R_c_lmjmpk);
	} // END FOR l j m k

  int noOfMoments_1 = (l_1+1)*(l_1+1);
  int noOfMoments_2 = (l_2+1)*(l_2+1);

  for(int A = 0; A < noOfMoments_1; A++)
    for(int B = 0; B < noOfMoments_2; B++)
      {
	int l = l_m_list[A].l;
	int m = l_m_list[A].m;
	int j = l_m_list[B].l;
	int k = l_m_list[B].m;

	result_W[A*noOfMoments_2+B] = 0;

	if(m >= 0 && k >= 0)
	  result_W[A*noOfMoments_2+B] = W_cc[l][m][j][k];
	if(m >= 0 && k < 0)
	  result_W[A*noOfMoments_2+B] = W_cs[l][m][j][-k];
	if(m < 0 && k >= 0)
	  result_W[A*noOfMoments_2+B] = W_sc[l][-m][j][k];
	if(m < 0 && k < 0)
	  result_W[A*noOfMoments_2+B] = W_ss[l][-m][j][-k];

	result_W[A*noOfMoments_2+B] *= multipolePrep.get_lm_factor(j, k) / multipolePrep.get_lm_factor(l, m);
      }

  return 0;
}


MMInteractor::MMInteractor(const MultipolePrepManager & multipolePrepManager)
  : multipolePrep(multipolePrepManager)
{
  buffer_T_cc = new ergo_real[MMDP1*MMDP1*MMDP1*MMDP1];
  buffer_T_cs = new ergo_real[MMDP1*MMDP1*MMDP1*MMDP1];
  buffer_T_sc = new ergo_real[MMDP1*MMDP1*MMDP1*MMDP1];
  buffer_T_ss = new ergo_real[MMDP1*MMDP1*MMDP1*MMDP1];
}

MMInteractor::~MMInteractor()
{
  delete [] buffer_T_cc;
  delete [] buffer_T_cs;
  delete [] buffer_T_sc;
  delete [] buffer_T_ss;
}

int
MMInteractor::getInteractionMatrix(ergo_real dx,
                                   ergo_real dy,
                                   ergo_real dz,
                                   int l_1,
                                   int l_2,
                                   ergo_real* result_T)
{
  assert(multipolePrep.is_initialized());
  ergo_real r2 = dx*dx + dy*dy + dz*dz;
  ergo_real oneOverR2 = (ergo_real)1 / r2;
  ergo_real oneOverR  = template_blas_sqrt(oneOverR2);

  const MultipolePrepManager::l_m_struct* l_m_list = multipolePrep.get_l_m_list_ptr();

  // generate values of all needed "scaled irregular solid harmonics"
  //int largest_l_needed = distrMultipole->degree + otherMultipole->degree;
  int largest_l_needed = (2*MAX_MULTIPOLE_DEGREE);

  int noOf_l_values = largest_l_needed + 1;
  int L = noOf_l_values;
  ergo_real I_c[L][L];
  ergo_real I_s[L][L];
  
  I_c[0][0] = oneOverR;
  I_s[0][0] = 0;

  int LL = l_1 + l_2;

  // generate all I_c and I_s with l = m
  for(int l = 0; l < LL; l++) {
    I_c[l+1][l+1] = -(2*l + 1) * oneOverR2 * (dx * I_c[l][l] - dy * I_s[l][l]);
    I_s[l+1][l+1] = -(2*l + 1) * oneOverR2 * (dy * I_c[l][l] + dx * I_s[l][l]);
  }
  // generate all I_c and I_s with l > m
  for(int l = 0; l < LL; l++) {
    for(int m = 0; m <= l; m++) {
      ergo_real I_c_lmin1m = 0;
      ergo_real I_s_lmin1m = 0;
      if(l > 0 && m < l) {
	I_c_lmin1m = I_c[l-1][m];
	I_s_lmin1m = I_s[l-1][m];
      }
      I_c[l+1][m] = oneOverR2 * ((2*l+1)*dz*I_c[l][m] - (l*l - m*m)*I_c_lmin1m);
      I_s[l+1][m] = oneOverR2 * ((2*l+1)*dz*I_s[l][m] - (l*l - m*m)*I_s_lmin1m);
    }
  }  

  ergo_real m1topowlist[MAX_MULTIPOLE_DEGREE+1];
  m1topowlist[0] = 1;
  for(int k = 1; k <= MAX_MULTIPOLE_DEGREE; k++)
    m1topowlist[k] = m1topowlist[k-1] * -1;
  ergo_real onehalftopowlist[3];
  onehalftopowlist[0] = 1.0;
  onehalftopowlist[1] = 0.5;
  onehalftopowlist[2] = 0.25;

  // Use I_c and I_s values to generate Interaction matrix
  const int MMDP1 = MAX_MULTIPOLE_DEGREE+1;
  ergo_real (*T_cc)[MMDP1][MMDP1][MMDP1] = (ergo_real(*)[MMDP1][MMDP1][MMDP1])buffer_T_cc;
  ergo_real (*T_cs)[MMDP1][MMDP1][MMDP1] = (ergo_real(*)[MMDP1][MMDP1][MMDP1])buffer_T_cs;
  ergo_real (*T_sc)[MMDP1][MMDP1][MMDP1] = (ergo_real(*)[MMDP1][MMDP1][MMDP1])buffer_T_sc;
  ergo_real (*T_ss)[MMDP1][MMDP1][MMDP1] = (ergo_real(*)[MMDP1][MMDP1][MMDP1])buffer_T_ss;

  for(int l = 0; l <= l_1; l++)
    for(int j = 0; j <= l_2; j++)
      for(int m = 0; m <= l; m++)
	for(int k = 0; k <= j; k++) {
	  ergo_real I_c_lpjmmk;
	  ergo_real I_s_lpjmmk;
	  if(m >= k) {
	    I_c_lpjmmk = I_c[l+j][m-k];
	    I_s_lpjmmk = I_s[l+j][m-k];
	  }
	  else {
	    I_c_lpjmmk =  m1topowlist[k-m] * I_c[l+j][k-m];
	    I_s_lpjmmk = -m1topowlist[k-m] * I_s[l+j][k-m];
	  }	
	  int dm0 = 0;
	  int dk0 = 0;
	  if(m == 0)
	    dm0 = 1;
	  if(k == 0)
	    dk0 = 1;

	  ergo_real commonPreFactor = m1topowlist[j] * onehalftopowlist[dm0 + dk0] * 2;
	  ergo_real m1topowk = m1topowlist[k];
	  ergo_real I_c_lpjmpk = I_c[l+j][m+k];
	  ergo_real I_s_lpjmpk = I_s[l+j][m+k];

	  T_cc[l][m][j][k] = commonPreFactor * ( I_c_lpjmpk + m1topowk * I_c_lpjmmk);
	  T_cs[l][m][j][k] = commonPreFactor * ( I_s_lpjmpk - m1topowk * I_s_lpjmmk);
	  T_sc[l][m][j][k] = commonPreFactor * ( I_s_lpjmpk + m1topowk * I_s_lpjmmk);
	  T_ss[l][m][j][k] = commonPreFactor * (-I_c_lpjmpk + m1topowk * I_c_lpjmmk);

	} // END FOR l j m k

  int noOfMoments_1 = (l_1+1)*(l_1+1);
  int noOfMoments_2 = (l_2+1)*(l_2+1);

  for(int A = 0; A < noOfMoments_1; A++)
    for(int B = 0; B < noOfMoments_2; B++) {
      int l = l_m_list[A].l;
      int m = l_m_list[A].m;
      int j = l_m_list[B].l;
      int k = l_m_list[B].m;

      result_T[A*noOfMoments_2+B] = 0;

      if(m >= 0 && k >= 0)
	result_T[A*noOfMoments_2+B] = T_cc[l][m][j][k];
      if(m >= 0 && k < 0)
	result_T[A*noOfMoments_2+B] = T_cs[l][m][j][-k];
      if(m < 0 && k >= 0)
	result_T[A*noOfMoments_2+B] = T_sc[l][-m][j][k];
      if(m < 0 && k < 0)
	result_T[A*noOfMoments_2+B] = T_ss[l][-m][j][-k];

      result_T[A*noOfMoments_2+B] *= multipolePrep.get_lm_factor(l, m) * multipolePrep.get_lm_factor(j, k);
    }

  return 0;
}


int
setup_multipole_maxAbsMomentList(multipole_struct_large* multipole) {
  ergo_real largestAbsMomentSoFar = 0;
  for(int degree = MAX_MULTIPOLE_DEGREE; degree >= 0; degree--) {
    int startIndex = degree*degree;
    int endIndex = (degree+1)*(degree+1);
    ergo_real sumOfSquares = 0;
    for(int i = startIndex; i < endIndex; i++) {
      ergo_real absMoment = template_blas_fabs(multipole->momentList[i]);
      if(absMoment > largestAbsMomentSoFar)
	largestAbsMomentSoFar = absMoment;
      sumOfSquares += absMoment * absMoment;
    }
    multipole->maxAbsMomentList[degree] = largestAbsMomentSoFar;
    multipole->euclideanNormList[degree] = template_blas_sqrt(sumOfSquares);
  } // END FOR degree
  return 0;
}