1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file organize_distrs_mm.cc
@brief Code for organizing a given set of primitive Gaussian
distributions (typically coming from basis function products)
regarding information related to multipole methods.
@author: Elias Rudberg <em>responsible</em>
*/
#include "organize_distrs_mm.h"
#include "serialization_tools.h"
#include <stdexcept>
/* distr_org_mm_struct functions */
distr_org_mm_struct::Data::Data() : chargeSum(0) {
multipole.degree = -1;
multipole.noOfMoments = 0;
memset(multipole.momentList, 0, MAX_NO_OF_MOMENTS_PER_MULTIPOLE*sizeof(ergo_real));
memset(&multipolePoint, 0x00, 3*sizeof(ergo_real));
memset(maxMomentVectorNormForDistrsList, 0, (MAX_MULTIPOLE_DEGREE_BASIC+1)*sizeof(ergo_real));
}
void distr_org_mm_struct::writeToBuffer(char* dataBuffer, size_t const bufferSize) const {
assert(bufferSize >= getSize());
char* p = dataBuffer;
memcpy(p, &data, sizeof(data));
p += sizeof(data);
std_vector_writeToBuffer_and_move_ptr(multipoleListForGroups, p);
std_vector_writeToBuffer_and_move_ptr(multipoleListForDistrs, p);
}
size_t distr_org_mm_struct::getSize() const {
size_t size = sizeof(distr_org_mm_struct::Data);
size += std_vector_getSize(multipoleListForGroups);
size += std_vector_getSize(multipoleListForDistrs);
return size;
}
void distr_org_mm_struct::assignFromBuffer(char const * dataBuffer, size_t const bufferSize) {
const char* p = dataBuffer;
size_t remainingBytes = bufferSize;
assert(remainingBytes >= sizeof(data));
memcpy(&data, p, sizeof(data));
p += sizeof(data);
const char* bufEndPtr = &dataBuffer[bufferSize];
std_vector_assignFromBuffer_and_move_ptr(multipoleListForGroups, p, bufEndPtr);
std_vector_assignFromBuffer_and_move_ptr(multipoleListForDistrs, p, bufEndPtr);
}
/* distr_list_description_struct functions */
void distr_list_description_struct::writeToBuffer(char* dataBuffer, size_t const bufferSize) const {
assert(bufferSize >= getSize());
char* p = dataBuffer;
org.writeToBuffer(p, org.getSize());
p += org.getSize();
org_mm.writeToBuffer(p, org_mm.getSize());
p += org_mm.getSize();
assert((size_t)(p - dataBuffer) <= bufferSize);
}
size_t distr_list_description_struct::getSize() const {
return org.getSize() + org_mm.getSize();
}
void distr_list_description_struct::assignFromBuffer(char const * dataBuffer, size_t const bufferSize) {
const char* p = dataBuffer;
org.assignFromBuffer(p, bufferSize);
p += org.getSize();
org_mm.assignFromBuffer(p, bufferSize - org.getSize());
p += org_mm.getSize();
assert((size_t)(p - dataBuffer) == bufferSize);
}
/* ************************************************** */
int
generate_multipoles_for_groups(const IntegralInfo & integralInfo,
const distr_org_struct & org,
distr_org_mm_struct & result_org_mm,
ergo_real* averagePosList,
int & avgPosCounter
) {
ergo_real chargeSum = 0;
const std::vector<batch_struct> & batchList = org.batchList;
const std::vector<cluster_struct> & clusterList = org.clusterList;
const std::vector<distr_group_struct> & groupList = org.groupList;
const std::vector<minimal_distr_struct> & minimalDistrList = org.minimalDistrList;
int batchCount = batchList.size();
const std::vector<basis_func_pair_struct> & basisFuncPairList = org.basisFuncPairList;
ergo_real* maxMomentVectorNormForDistrsList = result_org_mm.data.maxMomentVectorNormForDistrsList;
for(int l = 0; l <= MAX_MULTIPOLE_DEGREE_BASIC; l++)
maxMomentVectorNormForDistrsList[l] = 0;
int groupCount = org.groupList.size();
result_org_mm.multipoleListForGroups.resize(groupCount);
for(int batchIndex = 0; batchIndex < batchCount; batchIndex++) {
int clusterCount = batchList[batchIndex].noOfClusters;
int cluster_start = batchList[batchIndex].clusterStartIndex;
for(int clusterIndex = cluster_start; clusterIndex < cluster_start + clusterCount; clusterIndex++) {
int group_start = clusterList[clusterIndex].groupStartIndex;
int group_end = group_start + clusterList[clusterIndex].noOfGroups;
for(int groupIndex = group_start; groupIndex < group_end; groupIndex++) {
const distr_group_struct* currGroup = &groupList[groupIndex];
// Now create a single multipole description of the density of this group.
multipole_struct_small* multipoleCurrGroup = &result_org_mm.multipoleListForGroups[groupIndex];
multipoleCurrGroup->degree = -1;
multipoleCurrGroup->noOfMoments = 0;
multipoleCurrGroup->centerCoords[0] = currGroup->centerCoords[0];
multipoleCurrGroup->centerCoords[1] = currGroup->centerCoords[1];
multipoleCurrGroup->centerCoords[2] = currGroup->centerCoords[2];
memset(multipoleCurrGroup->momentList, 0, MAX_NO_OF_MOMENTS_PER_MULTIPOLE_BASIC*sizeof(ergo_real));
int distr_start = currGroup->startIndex;
int distr_end = distr_start + currGroup->distrCount;
for(int distrIndex = distr_start; distrIndex < distr_end; distrIndex++) {
int basisFuncPairIndex = minimalDistrList[distrIndex].basisFuncPairIndex;
int monomialIndex = minimalDistrList[distrIndex].monomialIndex;
ergo_real coeff = minimalDistrList[distrIndex].coeff;
// get monomialInts from monomialIndex
DistributionSpecStruct distr;
distr.monomialInts[0] = integralInfo.monomial_info.monomial_list[monomialIndex].ix;
distr.monomialInts[1] = integralInfo.monomial_info.monomial_list[monomialIndex].iy;
distr.monomialInts[2] = integralInfo.monomial_info.monomial_list[monomialIndex].iz;
distr.coeff = coeff;
distr.exponent = currGroup->exponent;
distr.centerCoords[0] = currGroup->centerCoords[0];
distr.centerCoords[1] = currGroup->centerCoords[1];
distr.centerCoords[2] = currGroup->centerCoords[2];
multipole_struct_small multipole;
if(compute_multipole_moments(integralInfo, &distr, &multipole) != 0) {
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in compute_multipole_moments");
return -1;
}
// add this multipole to multipole for group.
int a = basisFuncPairList[batchList[batchIndex].basisFuncPairListIndex+basisFuncPairIndex].index_1;
int b = basisFuncPairList[batchList[batchIndex].basisFuncPairListIndex+basisFuncPairIndex].index_2;
ergo_real factor = basisFuncPairList[batchList[batchIndex].basisFuncPairListIndex+basisFuncPairIndex].dmatElement;
if(a != b)
factor *= 2;
for(int l = 0; l <= multipole.degree; l++) {
int startIndex = l*l;
int endIndex = (l+1)*(l+1);
ergo_real sum = 0;
for(int A = startIndex; A < endIndex; A++)
sum += multipole.momentList[A]*multipole.momentList[A];
ergo_real subNorm = template_blas_sqrt(sum);
if(subNorm > maxMomentVectorNormForDistrsList[l])
maxMomentVectorNormForDistrsList[l] = subNorm;
}
for(int kk = 0; kk < multipole.noOfMoments; kk++)
multipoleCurrGroup->momentList[kk] += factor * multipole.momentList[kk];
if(multipole.degree > multipoleCurrGroup->degree)
multipoleCurrGroup->degree = multipole.degree;
if(multipole.noOfMoments > multipoleCurrGroup->noOfMoments)
multipoleCurrGroup->noOfMoments = multipole.noOfMoments;
} // END FOR distrIndex
// OK, multipoleCurrGroup is complete.
chargeSum += multipoleCurrGroup->momentList[0];
for(int kk = 0; kk < 3; kk++)
averagePosList[kk] += multipoleCurrGroup->centerCoords[kk];
avgPosCounter++;
} // END FOR groupIndex
} // END FOR clusterIndex
} // END FOR batchIndex
return 0;
}
int
get_multipole_pt_for_box(const ergo_real* boxCenterCoords,
ergo_real boxWidth,
const ergo_real* averagePosList,
int avgPosCounter,
ergo_real* resultMultipolePoint) {
// use average position instead of center-of-charge,
// because center-of-charge is ill-defined when some charges are negative.
if(avgPosCounter == 0) {
for(int kk = 0; kk < 3; kk++)
resultMultipolePoint[kk] = boxCenterCoords[kk];
}
else {
for(int kk = 0; kk < 3; kk++)
resultMultipolePoint[kk] = averagePosList[kk] / avgPosCounter;
}
// check that "resultMultipolePoint" is not too far from box center.
ergo_real sumofsquares = 0;
for(int kk = 0; kk < 3; kk++) {
ergo_real dx = resultMultipolePoint[kk] - boxCenterCoords[kk];
sumofsquares += dx*dx;
}
ergo_real distFromCenter = template_blas_sqrt(sumofsquares);
if(distFromCenter > boxWidth) {
do_output(LOG_CAT_ERROR, LOG_AREA_INTEGRALS, "error in get_multipole_pt_for_box: (distFromCenter > boxWidth).");
return -1;
}
return 0;
}
int
translate_multipoles_for_box(distr_org_mm_struct & result_org_mm,
const distr_org_struct & org,
const MMTranslator & translator
) {
ergo_real* multipolePointCoords = result_org_mm.data.multipolePoint;
multipole_struct_large branchMultipole;
for(int A = 0; A < MAX_NO_OF_MOMENTS_PER_MULTIPOLE; A++)
branchMultipole.momentList[A] = 0;
for(int kk = 0; kk < 3; kk++)
branchMultipole.centerCoords[kk] = multipolePointCoords[kk];
branchMultipole.degree = MAX_MULTIPOLE_DEGREE;
branchMultipole.noOfMoments = MAX_NO_OF_MOMENTS_PER_MULTIPOLE;
const std::vector<batch_struct> & batchList = org.batchList;
const std::vector<cluster_struct> & clusterList = org.clusterList;
const std::vector<multipole_struct_small> & multipoleListForGroups = result_org_mm.multipoleListForGroups;
int batchCount = org.batchList.size();
for(int batchIndex = 0; batchIndex < batchCount; batchIndex++) {
int clusterCount = batchList[batchIndex].noOfClusters;
int cluster_start = batchList[batchIndex].clusterStartIndex;
for(int clusterIndex = cluster_start; clusterIndex < cluster_start + clusterCount; clusterIndex++) {
int group_start = clusterList[clusterIndex].groupStartIndex;
int group_end = group_start + clusterList[clusterIndex].noOfGroups;
for(int groupIndex = group_start; groupIndex < group_end; groupIndex++) {
const multipole_struct_small & multipoleCurrGroup = multipoleListForGroups[groupIndex];
// take multipole for this group, and translate it to center-of-charge point
ergo_real dx = multipoleCurrGroup.centerCoords[0] - multipolePointCoords[0];
ergo_real dy = multipoleCurrGroup.centerCoords[1] - multipolePointCoords[1];
ergo_real dz = multipoleCurrGroup.centerCoords[2] - multipolePointCoords[2];
ergo_real W[MAX_NO_OF_MOMENTS_PER_MULTIPOLE*MAX_NO_OF_MOMENTS_PER_MULTIPOLE];
translator.getTranslationMatrix
(dx, dy, dz, MAX_MULTIPOLE_DEGREE,
multipoleCurrGroup.degree, W);
multipole_struct_large translatedMultipole;
for(int A = 0; A < MAX_NO_OF_MOMENTS_PER_MULTIPOLE; A++) {
ergo_real sum = 0;
for(int B = 0; B < multipoleCurrGroup.noOfMoments; B++)
sum += W[A*multipoleCurrGroup.noOfMoments+B] * multipoleCurrGroup.momentList[B];
translatedMultipole.momentList[A] = sum;
} // END FOR A
for(int kk = 0; kk < 3; kk++)
translatedMultipole.centerCoords[kk] = multipolePointCoords[kk];
translatedMultipole.degree = MAX_MULTIPOLE_DEGREE;
translatedMultipole.noOfMoments = MAX_NO_OF_MOMENTS_PER_MULTIPOLE;
// add translated multipole to branch multipole
for(int A = 0; A < MAX_NO_OF_MOMENTS_PER_MULTIPOLE; A++)
branchMultipole.momentList[A] += translatedMultipole.momentList[A];
} // END FOR groupIndex
} // END FOR clusterIndex
} // END FOR batchIndex
setup_multipole_maxAbsMomentList(&branchMultipole);
result_org_mm.data.multipole = branchMultipole;
return 0;
}
int
combine_mm_info_for_child_boxes(distr_list_description_struct & result_box_branch,
const distr_list_description_struct** child_box_branches,
int noOfChildren,
const MMTranslator & translator) {
multipole_struct_large & newMultipole = result_box_branch.org_mm.data.multipole;
for(int A = 0; A < MAX_NO_OF_MOMENTS_PER_MULTIPOLE; A++)
newMultipole.momentList[A] = 0;
// get average position of child multipoles
ergo_real avgPosList[3];
for(int kk = 0; kk < 3; kk++)
avgPosList[kk] = 0;
ergo_real* maxMomentVectorNormForDistrsList = result_box_branch.org_mm.data.maxMomentVectorNormForDistrsList;
for(int l = 0; l <= MAX_MULTIPOLE_DEGREE_BASIC; l++)
maxMomentVectorNormForDistrsList[l] = 0;
for(int childIndex = 0; childIndex < noOfChildren; childIndex++) {
for(int kk = 0; kk < 3; kk++)
avgPosList[kk] += child_box_branches[childIndex]->org_mm.data.multipole.centerCoords[kk];
} // END FOR childIndex
for(int kk = 0; kk < 3; kk++)
newMultipole.centerCoords[kk] = avgPosList[kk] / noOfChildren;
newMultipole.degree = MAX_MULTIPOLE_DEGREE;
newMultipole.noOfMoments = MAX_NO_OF_MOMENTS_PER_MULTIPOLE;
// We also want to get maxExtent and maxDistanceOutsideBox for parent box (use largest values found among the children).
ergo_real maxExtent = 0;
ergo_real maxDistanceOutsideBox = 0;
// Now translate child multipoles and add to parent multipole
for(int childIndex = 0; childIndex < noOfChildren; childIndex++) {
const multipole_struct_large* childMultipole = &child_box_branches[childIndex]->org_mm.data.multipole;
if(child_box_branches[childIndex]->org.data.maxExtent > maxExtent)
maxExtent = child_box_branches[childIndex]->org.data.maxExtent;
if(child_box_branches[childIndex]->org.data.maxDistanceOutsideBox > maxDistanceOutsideBox)
maxDistanceOutsideBox = child_box_branches[childIndex]->org.data.maxDistanceOutsideBox;
ergo_real dx = childMultipole->centerCoords[0] - newMultipole.centerCoords[0];
ergo_real dy = childMultipole->centerCoords[1] - newMultipole.centerCoords[1];
ergo_real dz = childMultipole->centerCoords[2] - newMultipole.centerCoords[2];
ergo_real W[MAX_NO_OF_MOMENTS_PER_MULTIPOLE*MAX_NO_OF_MOMENTS_PER_MULTIPOLE];
translator.getTranslationMatrix(dx, dy, dz,
MAX_MULTIPOLE_DEGREE,
MAX_MULTIPOLE_DEGREE, W);
multipole_struct_large translatedMultipole;
for(int A = 0; A < MAX_NO_OF_MOMENTS_PER_MULTIPOLE; A++) {
ergo_real sum = 0;
for(int B = 0; B < MAX_NO_OF_MOMENTS_PER_MULTIPOLE; B++)
sum += W[A*MAX_NO_OF_MOMENTS_PER_MULTIPOLE+B] * childMultipole->momentList[B];
translatedMultipole.momentList[A] = sum;
} // END FOR A
for(int kk = 0; kk < 3; kk++)
translatedMultipole.centerCoords[kk] = newMultipole.centerCoords[kk];
translatedMultipole.degree = MAX_MULTIPOLE_DEGREE;
translatedMultipole.noOfMoments = MAX_NO_OF_MOMENTS_PER_MULTIPOLE;
// add translated multipole to parent multipole
for(int A = 0; A < MAX_NO_OF_MOMENTS_PER_MULTIPOLE; A++)
newMultipole.momentList[A] += translatedMultipole.momentList[A];
for(int l = 0; l <= MAX_MULTIPOLE_DEGREE_BASIC; l++) {
ergo_real childValue = child_box_branches[childIndex]->org_mm.data.maxMomentVectorNormForDistrsList[l];
if(childValue > maxMomentVectorNormForDistrsList[l])
maxMomentVectorNormForDistrsList[l] = childValue;
}
} // END FOR childIndex
setup_multipole_maxAbsMomentList(&newMultipole);
result_box_branch.org.data.maxExtent = maxExtent;
result_box_branch.org.data.maxDistanceOutsideBox = maxDistanceOutsideBox;
return 0;
}
|