1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file LanczosSeveralLargestEig.h Class for computing several largest
* (note: not by magnitude) eigenvalues of a symmetric matrix with the Lanczos method.
*
* Copyright(c) Anastasia Kruchinina 2015
*
* @author Anastasia Kruchinina
* @date December 2015
*
*/
#ifndef MAT_LANCZOSSEVERALLARGESTMAGNITUDEEIG
#define MAT_LANCZOSSEVERALLARGESTMAGNITUDEEIG
#include <limits>
#include <vector>
namespace mat { /* Matrix namespace */
namespace arn { /* Arnoldi type methods namespace */
template<typename Treal, typename Tmatrix, typename Tvector>
class LanczosSeveralLargestEig
{
public:
// AA - matrix
// startVec - starting guess vector
// num_eigs - number of eigenvalues to compute
// maxIter(100) - number of iterations
// cap(100) - estimated number of vectors in the Krylov subspace, will be increased if needed automatically
// deflVec_(NULL) - (deflation) vector corresponding to an uninteresting eigenvalue
// sigma_(0) - (deflation) shift of an uninteresting eigenvalue (to put it in the uninteresting part of the spectrum)
LanczosSeveralLargestEig(Tmatrix const & AA, Tvector const & startVec, int num_eigs,
int maxit = 100, int cap = 100, Tvector * deflVec_ = NULL, Treal sigma_ = 0)
: A(AA),
v(new Tvector[cap]),
eigVectorTri(0),
capacity(cap),
j(0),
maxIter(maxit),
eValTmp(0),
accTmp(0),
number_of_eigenv(num_eigs),
alpha(0),
beta(0),
use_selective_orth(false),
use_full_orth(true),
counter_all(0),
counter_orth(0),
deflVec(deflVec_)
{
assert(cap > 1);
Treal const ONE = 1.0;
v[0] = startVec;
if(v[0].eucl() < template_blas_sqrt(getRelPrecision<Treal>())) {
v[0].rand();
}
v[0] *= (ONE / v[0].eucl());
r = v[0];
if(number_of_eigenv == 1)
{unset_use_full_orth(); unset_use_selective_orth();}
absTol = 1e-12;
relTol = 1e-12;
sigma = sigma_;
}
// Absolute and relative tolerances
// Absolute accuracy is measured by the residual ||Ax-lambda*x||
// Realtive accuracy is measured by the relative residual ||Ax-lambda*x||/|lambda|
void setRelTol(Treal const newTol) { relTol = newTol; }
void setAbsTol(Treal const newTol) { absTol = newTol; }
void set_use_selective_orth(){ use_selective_orth = true; }
void set_use_full_orth(){ use_full_orth = true; }
void unset_use_selective_orth(){ use_selective_orth = false; }
void unset_use_full_orth(){ use_full_orth = false; }
virtual void run() {
do {
if(j > 1 && use_selective_orth)
selective_orth();
step();
update();
if (j > maxIter)
throw AcceptableMaxIter("Lanczos::run() did not converge within maxIter");
}
while (!converged());
total_num_iter = j;
// check orthogonality just in case
if(number_of_eigenv > 1)
{
for(int i = 0; i < total_num_iter-1; ++i)
for(int k = 0; k < total_num_iter-1; ++k)
{
if(i == k) continue;
v[i].readFromFile(); v[k].readFromFile();
Treal val = transpose(v[i]) * v[k]; // should be 0
if(val > template_blas_sqrt(mat::getMachineEpsilon<Treal>()))
throw std::runtime_error("Lanczos::run() : detected loss of orthogonality! Discard results.");
v[i].writeToFile(); v[k].writeToFile();
}
for(int k = 0; k < total_num_iter-1; ++k)
{
v[k].readFromFile();
Treal val = transpose(v[k]) * v[total_num_iter]; // should be 0
if(val > template_blas_sqrt(mat::getMachineEpsilon<Treal>()))
throw std::runtime_error("Lanczos::run() : detected loss of orthogonality! Discard results.");
v[k].writeToFile();
}
}
}
// i is a number of eigenvalue (1 is the largest, 2 is the second largest and so on)
virtual void get_ith_eigenpair(int i, Treal& eigVal, Tvector& eigVec, Treal & acc)
{
assert(i > 0);
assert(i <= size_accTmp);
eigVal = eValTmp[size_accTmp - i]; // array
assert(eigVectorTri);
getEigVector(eigVec, &eigVectorTri[j * (size_accTmp - i)]);
acc = accTmp[size_accTmp - i];
}
int get_num_iter() const{ return total_num_iter;}
virtual ~LanczosSeveralLargestEig() {
if(use_selective_orth)
printf("Orthogonalized %d of total possible %d, this is %lf %%\n", counter_orth, counter_all, (double)counter_orth/counter_all*100);
delete[] eigVectorTri;
delete[] eValTmp;
delete[] accTmp;
delete[] v;
}
inline void copyTridiag(MatrixTridiagSymmetric<Treal> & Tricopy) {
Tricopy = Tri;
}
protected:
Tmatrix const & A;
Tvector* v; /** Vectors spanning Krylov subspace.
* In step j: Vectors 0 : j-2 is on file
* Vectors j-1 : j is in memory
*/
Tvector r; /** Residual vector */
MatrixTridiagSymmetric<Treal> Tri;
Treal* eigVectorTri; // Eigenvectors of the tridiagonal matrix
int capacity;
int j; /** Current step */
int maxIter;
void increaseCapacity(int const newCapacity);
void getEigVector(Tvector& eigVec, Treal const * const eVecTri) const;
Treal absTol;
Treal relTol;
virtual void step();
virtual void computeEigenPairTri();
virtual void update() {
computeEigenPairTri();
}
void selective_orth();
virtual bool converged() const;
virtual bool converged_ith(int i) const;
Treal* eValTmp; // current computed eigenvalues (less or equal to number_of_eigenv)
Treal* accTmp; // residuals
int number_of_eigenv; // eigenvalues are saved in the decreasing order, thus the largest one has index 1
int size_accTmp; // size of accTmp (number of computed eigenvalues of the matrix T)
private:
Treal alpha;
Treal beta;
int total_num_iter;
bool use_selective_orth;
bool use_full_orth;
int counter_all;
int counter_orth;
// if deflation is used
Tvector * deflVec;
Treal sigma;
};
template<typename Treal, typename Tmatrix, typename Tvector>
void LanczosSeveralLargestEig<Treal, Tmatrix, Tvector>::
selective_orth()
{
int j_curr = j-1;
Treal coeff = 0, res;
Treal normT = 0; // spectral norm of T (since norm of A is not available)
// find largest by absolute value eigenvalue of T
for(int i = 0; i <= j_curr; ++i)
if(template_blas_fabs(eValTmp[i]) > normT) normT = template_blas_fabs(eValTmp[i]);
Treal epsilon = mat::getMachineEpsilon<Treal>();
Tvector tmp;
tmp = v[j_curr+1];
tmp *= beta; // return non-normalized value
for(int i = j_curr; i >= 0; --i)
{
counter_all++;
// get residual for this eigenpair
res = accTmp[i];
Treal tol = template_blas_sqrt(epsilon) * normT;
if(res <= tol) // b_{j} * |VT_i(j)| <= sqrt(eps) * norm(A), but we do not have norm(A)
{
counter_orth++;
Tvector eigVec;
getEigVector(eigVec, &eigVectorTri[j_curr * i]); // y = U*VT(:, i); % ith Ritz vector
coeff = transpose(eigVec) * tmp;
tmp += (-coeff) * (eigVec); // v = v - (y'*v)*y
}
}
v[j_curr+1] = tmp;
beta = v[j_curr+1].eucl(); // update beta
Treal const ONE = 1.0;
v[j_curr+1] *= ONE / beta; // normalized
Tri.update_beta(beta);
}
template<typename Treal, typename Tmatrix, typename Tvector>
void LanczosSeveralLargestEig<Treal, Tmatrix, Tvector>::
step()
{
if (j + 1 >= capacity)
increaseCapacity(capacity * 2);
Treal const ONE = 1.0;
A.matVecProd(r, v[j]); // r = A * v[j]
alpha = transpose(v[j]) * r; // alpha = v[j]'*A*v[j]
/*
If one wants to use deflation with vector
x_1:=deflVec (usually it is an eigenvector
corresponding to an eigenvalue lambda_1 of A)
and thus compute eigenvalues of the matrix
An = A-sigma*x_1*x_1'
Note: if lambga_i are eigenvalues of A corresponding to x_i, then
An will have eigenvalues (lambda_1-sigma, lambda_2, ..., lambda_N)
and unchanged eigenvectors x_i.
*/
if(deflVec != NULL)
{
/*
r = (A*vj - sigma*(x_1'*vj)*x_1) - alpha*vj - beta*v{j-1}
where
alpha = vj'*An*vj = vj'*A*vj - sigma * (x_1'*vj)^2
*/
Treal gamma = transpose(*deflVec) * v[j]; // dot product x' * v_j
alpha -= sigma*gamma*gamma;
r += (-sigma*gamma) * (*deflVec);
}
r += (-alpha) * v[j];
if (j) {
r += (-beta) * v[j-1];
v[j-1].writeToFile();
}
/*
If we need many eigenpairs, Lanczos vectors loose orthogonality as soon as one of the eigenpairs converges. If we continue iterations, then may appear some spurious eigenvalues. These spurious eigenvalues will eventually converge to the existing ones and we will get multiple convergence to the same eigenvalue. (In principle, we can probabaly check if we already converged to some eigenvalue before and just ignore it.) We use the simplest fix to the orthogonality loss, the full re-orthogonalization. This makes Lanczos procedure essentially equivalent to the Arnoldi algorithm. The only difference is that we are still using tridiagonal matrix.
*/
if(use_full_orth)
{
// full re-orthogonalization (modified Gram-Schmidt)
Treal gamma_i = 0;
for(int i = 0; i < j; ++i )
{
v[i].readFromFile();
gamma_i = transpose(r) * v[i]; // r'*v_i
r += (-gamma_i) * v[i]; // (r'*vi) * v_i
v[i].writeToFile();
}
gamma_i = transpose(r) * v[j]; // r'*v_i
r += (-gamma_i) * v[j]; // (r'*vi) * v_i
}
beta = r.eucl();
v[j+1] = r;
v[j+1] *= ONE / beta;
Tri.increase(alpha, beta);
j++;
}
/*
Compute eigenvectors of the tridiagonal matrix
*/
template<typename Treal, typename Tmatrix, typename Tvector>
void LanczosSeveralLargestEig<Treal, Tmatrix, Tvector>::
computeEigenPairTri() {
if( eigVectorTri != NULL ) delete[] eigVectorTri;
if( accTmp != NULL ) delete[] accTmp;
if( eValTmp != NULL ) delete[] eValTmp;
int num_compute_eigenvalues;
if(use_selective_orth)
num_compute_eigenvalues = j; // we need all eigenvectors of T
else
num_compute_eigenvalues = number_of_eigenv; // it is enough just number_of_eigenv of T
/* Get largest eigenvalues */
int const max_ind = j-1; // eigenvalue count starts with 0
int const min_ind = std::max(j - num_compute_eigenvalues, 0);
Treal* eigVectors = new Treal[j * num_compute_eigenvalues]; // every vector of size j
Treal* eigVals = new Treal[num_compute_eigenvalues];
Treal* accMax = new Treal[num_compute_eigenvalues];
assert(eigVectors != NULL);
assert(eigVals != NULL);
assert(accMax != NULL);
Tri.getEigsByIndex(eigVals, eigVectors, accMax,
min_ind, max_ind);
eValTmp = eigVals;
eigVectorTri = eigVectors;
accTmp = accMax;
size_accTmp = num_compute_eigenvalues;
// set unused pointers to NULL
eigVectors = NULL;
eigVals = NULL;
accMax = NULL;
}
/* FIXME: If several eigenvectors are needed it is more optimal to
* compute all of them at once since then the krylov subspace vectors
* only need to be read from memory once.
*/
template<typename Treal, typename Tmatrix, typename Tvector>
void LanczosSeveralLargestEig<Treal, Tmatrix, Tvector>::
getEigVector(Tvector& eigVec, Treal const * const eVecTri) const {
if (j <= 1) {
eigVec = v[0];
}
else {
v[0].readFromFile();
eigVec = v[0];
v[0].writeToFile();
}
eigVec *= eVecTri[0];
for (int ind = 1; ind <= j - 2; ++ind) {
v[ind].readFromFile();
eigVec += eVecTri[ind] * v[ind];
v[ind].writeToFile();
}
eigVec += eVecTri[j-1] * v[j-1];
// normalized
Treal norm_eigVec = eigVec.eucl();
Treal const ONE = 1.0;
eigVec *= ONE / norm_eigVec;
}
// we want lowest eigenvalue to converge
template<typename Treal, typename Tmatrix, typename Tvector>
bool LanczosSeveralLargestEig<Treal, Tmatrix, Tvector>::
converged() const {
if(j < number_of_eigenv) return false;
bool conv1 = true;
if(number_of_eigenv > 1)
conv1 = converged_ith(number_of_eigenv-1);
bool conv = converged_ith(number_of_eigenv); // if the last needed eigenvalue converged
return conv && conv1;
}
// check convergence of ith eigenpair
template<typename Treal, typename Tmatrix, typename Tvector>
bool LanczosSeveralLargestEig<Treal, Tmatrix, Tvector>::
converged_ith(int i) const {
assert(size_accTmp >= i);
bool conv = true; //accTmp[size_accTmp - i] < absTol; /* Do not use absolute accuracy */
if (template_blas_fabs(eValTmp[size_accTmp - i]) > 0) {
conv = conv &&
accTmp[size_accTmp - i] / template_blas_fabs(eValTmp[size_accTmp - i]) < relTol; /* Relative acc.*/
}
return conv;
}
template<typename Treal, typename Tmatrix, typename Tvector>
void LanczosSeveralLargestEig<Treal, Tmatrix, Tvector>::
increaseCapacity(int const newCapacity) {
assert(newCapacity > capacity);
assert(j > 0);
capacity = newCapacity;
Tvector* new_v = new Tvector[capacity];
assert(new_v != NULL);
/* FIXME: Fix so that file is copied when operator= is called in Vector
* class
*/
for (int ind = 0; ind <= j - 2; ind++){
v[ind].readFromFile();
new_v[ind] = v[ind];
new_v[ind].writeToFile();
}
for (int ind = j - 1; ind <= j; ind++){
new_v[ind] = v[ind];
}
delete[] v;
v = new_v;
}
} /* end namespace arn */
} /* end namespace mat */
#endif
|