File: matrix_proxy.h

package info (click to toggle)
ergo 3.8.2-1.1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 17,568 kB
  • sloc: cpp: 94,763; ansic: 17,785; sh: 10,701; makefile: 1,403; yacc: 127; lex: 116; awk: 23
file content (581 lines) | stat: -rw-r--r-- 16,244 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */

/** @file matrix_proxy.h Proxy structs used by the matrix API
 *
 * This file contains proxy structs that are used by the matrix
 * API classes to enable operator syntax when using the API.
 *
 * Copyright(c) Emanuel Rubensson 2005
 *
 * @author Emanuel Rubensson  @a responsible @a author
 * @date February 2005
 *
 */
#ifndef MAT_MATRIX_PROXY
#define MAT_MATRIX_PROXY

namespace mat {
  /*********** New code */
  /** This proxy expresses the result of multiplication of two objects, 
   *  of possibly different types, TX and TY.
   *  Primary application is for scalars, matrices, and transposed matrices.
   */
  template<typename TX, typename TY>
    struct XY {
      TX const & A;
      TY const & B;
      bool const tA;
      bool const tB;
      XY(TX const & AA, TY const & BB, 
	 bool const tAA = false, bool const tBB = false)
	:A(AA), B(BB), tA(tAA), tB(tBB)
      {}
    };

  /** This proxy expresses the result of multiplication of three objects, 
   *  of possibly different types, TX, TY, and TZ.
   *  Primary application is for scalars, matrices, and transposed matrices.
   */
  template<typename TX, typename TY, typename TZ>
    struct XYZ {
      TX const & A;
      TY const & B;
      TZ const & C;
      bool const tA;
      bool const tB;
      bool const tC;
      XYZ(TX const & AA, TY const & BB, TZ const & CC, 
	  bool const tAA = false, 
	  bool const tBB = false, 
	  bool const tCC = false)
	:A(AA), B(BB), C(CC), tA(tAA), tB(tBB), tC(tCC)
      {}
    };

  /** This proxy expresses the result of multiplication of three objects
   *  added to two other multiplied objects. 
   *  All objects may have different types, TX, TY, TZ, TU, and TV.
   *  Primary application is for scalars, matrices, and transposed matrices.
   */
 template<typename TX, typename TY, typename TZ, typename TU, typename TV>
   struct XYZpUV {
     TX const & A;
     TY const & B;
     TZ const & C;
     TU const & D;
     TV const & E;
     bool const tA;
     bool const tB;
     bool const tC;
     bool const tD;
     bool const tE;
     XYZpUV(TX const & AA, TY const & BB, TZ const & CC, 
	    TU const & DD, TV const & EE, 
	    bool const tAA = false, 
	    bool const tBB = false, 
	    bool const tCC = false,
	    bool const tDD = false, 
	    bool const tEE = false)
       :A(AA), B(BB), C(CC), D(DD), E(EE), 
	tA(tAA), tB(tBB), tC(tCC), tD(tDD), tE(tEE)
     {}
   };


  /** This proxy expresses the result of transposition of an object
   *  of type TX.
   *  Primary application is for matrices and transposed matrices.
   *  @see transpose(TX const &)
   */
  template<typename TX>
    struct Xtrans {
      TX const & A;
      bool const tA;
      explicit Xtrans(TX const & AA, bool const tAA = false)
	:A(AA), tA(tAA)
      {}
    };
  
  /** Transposition.
   *  Returns a transposition proxy of an object of type TX.
   *  @see Xtrans 
   */
  template<typename TX>
    inline Xtrans<TX> transpose(TX const & A) {
    return Xtrans<TX>(A,true);
  }
  /** Transposition.
   *  Returns a transposition proxy of an object of type Xtrans<TX>.
   *  Only for correct treatment of repeated transposition, 
   *  e.g. transpose(transpose(A))
   *  @see Xtrans 
   *  @see transpose(TX const &)
   */
  template<typename TX>
    inline Xtrans<TX> transpose(const Xtrans<TX>& xtrans) {
    return Xtrans<TX>(xtrans.A, !xtrans.tA);
  }

  /* Some operators   */
  /** Multiplication of two transposition proxys holding objects of
   *  type TX and TY respectively.
   *  Returns multiplication proxy XY.
   *  @see XY
   *  @see Xtrans 
   *  @see operator*(TX const &, Xtrans<TY> const &)
   *  @see operator*(Xtrans<TX> const &, TY const &)
   *  @see operator*(TX const &, TY const &)
   */
  template<typename TX, typename TY>
    inline XY<TX, TY> operator*(Xtrans<TX> const & trAA, 
				Xtrans<TY> const & trBB) {
    return XY<TX, TY>(trAA.A, trBB.A, trAA.tA, trBB.tA);
  }

  /** Multiplication of an object of type TX with a tranposition proxy  
   *  holding an object of type TY.
   *  Returns multiplication proxy XY.
   *  @see XY
   *  @see Xtrans 
   *  @see operator*(Xtrans<TX> const &, Xtrans<TY> const &)
   *  @see operator*(Xtrans<TX> const &, TY const &)
   *  @see operator*(TX const &, TY const &)
   */
  template<typename TX, typename TY>
    inline XY<TX, TY> operator*(TX const & AA, 
				Xtrans<TY> const & trBB) {
    return XY<TX, TY>(AA, trBB.A, false, trBB.tA);
  }

  /** Multiplication of a tranposition proxy holding an object of type TX 
   *  with an object of type TY.
   *  Returns multiplication proxy XY.
   *  @see XY
   *  @see Xtrans 
   *  @see operator*(Xtrans<TX> const &, Xtrans<TY> const &)
   *  @see operator*(TX const &, Xtrans<TY> const &)
   *  @see operator*(TX const &, TY const &)
   */
  template<typename TX, typename TY>
    inline XY<TX, TY> operator*(Xtrans<TX> const & trAA, 
				TY const & BB) {
    return XY<TX, TY>(trAA.A, BB, trAA.tA, false);
  }
    
  /** Multiplication of an object of type TX with an object of type TY.
   *  Returns multiplication proxy XY.
   *  @see XY
   *  @see operator*(Xtrans<TX> const &, Xtrans<TY> const &)
   *  @see operator*(TX const &, Xtrans<TY> const &)
   *  @see operator*(Xtrans<TX> const &, TY const &)
   */
  template<typename TX, typename TY>
    inline XY<TX, TY> operator*(TX const & AA, 
				TY const & BB) {
    return XY<TX, TY>(AA, BB, false, false);
  }
  
  /** Multiplication of a multiplication proxy XY with a transposition 
   *  proxy Xtrans. 
   *  Returns multiplication proxy XYZ.
   *  @see XY
   *  @see XYZ
   *  @see Xtrans
   */
  template<typename TX, typename TY, typename TZ>
    inline XYZ<TX, TY, TZ> 
    operator*(XY<TX, TY> const & AB, Xtrans<TZ> const & trCC) {
    return XYZ<TX, TY, TZ>(AB.A, AB.B, trCC.A, AB.tA, AB.tB, trCC.tA); 
  }

  /** Multiplication of a multiplication proxy XY with an object of type TZ. 
   *  Returns multiplication proxy XYZ.
   *  @see XY
   *  @see XYZ
   */
  template<typename TX, typename TY, typename TZ>
    inline XYZ<TX, TY, TZ> 
    operator*(XY<TX, TY> const & AB, TZ const & CC) {
    return XYZ<TX, TY, TZ>(AB.A, AB.B, CC, AB.tA, AB.tB, false); 
  }
  
  /** Addition of two multiplication proxys XYZ and XY.
   * Returns multiplication and addition proxy XYZpUV.
   *  @see XY
   *  @see XYZ
   *  @see XYZpUV
   */
  template<typename TX, typename TY, typename TZ, typename TU, typename TV>
    inline XYZpUV<TX, TY, TZ, TU, TV> 
    operator+(XYZ<TX, TY, TZ> const & ABC, XY<TU, TV> const & DE) {
    return XYZpUV<TX, TY, TZ, TU, TV>(ABC.A, ABC.B, ABC.C, DE.A, DE.B, ABC.tA, ABC.tB, ABC.tC, DE.tA, DE.tB);
  }

  /** This proxy expresses the result of addition of two objects, 
   *  of possibly different types, TX and TY.
   *  Primary application is for scalars, matrices, and transposed matrices.
   */
  template<typename TX, typename TY>
    struct XpY {
      const TX& A;
      const TY& B;
      XpY(const TX& AA,const TY& BB)
	:A(AA),B(BB)
      {}
    };
  /** Addition of two objects of type TX and TY.
   *  @see XpY
   */
  template<typename TX, typename TY>
    inline XpY<TX, TY> operator+(TX const & AA, TY const & BB) {
    return XpY<TX, TY>(AA, BB);
  }

  /** This proxy expresses the result of substraction of two objects, 
   *  of possibly different types, TX and TY.
   *  Primary application is for scalars, matrices, and transposed matrices.
   */
  template<typename TX, typename TY>
    struct XmY {
      const TX& A;
      const TY& B;
      XmY(const TX& AA,const TY& BB)
	:A(AA),B(BB)
      {}
    };
  /** Substraction of two objects of type TX and TY.
   *  @see XmY
   */
  template<typename TX, typename TY>
    inline XmY<TX, TY> operator-(TX const & AA, TY const & BB) {
    return XmY<TX, TY>(AA, BB);
  }


  /************* New code ends */


#if 0
  template<class MAT>
    struct M2 {
      const MAT& A;
      M2(const MAT& AA)
	:A(AA)
      {}
    };
  
  template<class MAT>
    inline M2<MAT> square(const MAT& A) {
    return M2<MAT>(A);
  }

  template<class SCAL, class MAT>
    struct SM2 {
      const SCAL alpha;
      const MAT& A;
      SM2(const MAT& AA, const SCAL a = 1)
	: A(AA), alpha(a)
      {}
      SM2(const M2<MAT>& m2)
	:A(m2.A), alpha(1)
      {}
    };

  template<class SCAL, class MAT>
    inline SM2<SCAL, MAT> 
    operator*(const SCAL s, const M2<MAT>& m2) {
    return SM2<SCAL, MAT>(m2.A, s); 
  }
  
  

  
  template<class MAT>
    struct MT {
      const MAT& A;
      const bool tA;
      MT(const MAT& AA, const bool tAA = false)
	:A(AA), tA(tAA)
      {}
    };

  template<class MAT>
    inline MT<MAT> transpose(const MAT& A) {
    return MT<MAT>(A,true);
  }
  template<class MAT>
    inline MT<MAT> transpose(const MT<MAT>& mt) {
    return MT<MAT>(mt.A, !mt.tA);
  }

  
  template<class SCAL, class MAT>
    struct SM {
      const SCAL alpha;
      const MAT& A;  
      const bool tA;
    SM(const MAT& AA, const SCAL scalar = 1, const bool tAA = false)
      :A(AA),alpha(scalar), tA(tAA)
      {}
    }; 

  template<class SCAL, class MAT>
    inline SM<SCAL, MAT> operator*(const SCAL scalar, const MT<MAT>& mta) {
    return SM<SCAL, MAT>(mta.A,scalar, mta.tA);
  }
  
  template<class SCAL, class MAT>
    inline SM<SCAL, MAT> operator*(const SCAL scalar, const MAT& AA) {
    return SM<SCAL, MAT>(AA, scalar, false);
  }

  

  template<class MAT, class MATB = MAT>
    struct MM {
      const MAT& A;
      const MATB& B;
      const bool tA;
      const bool tB;
      MM(const MAT& AA,const MATB& BB, const bool tAA, const bool tBB)
	:A(AA),B(BB), tA(tAA), tB(tBB)
      {}
    };

  template<class MAT, class MATB = MAT>
    struct MpM {
      const MAT& A;
      const MATB& B;
      MpM(const MAT& AA,const MATB& BB)
	:A(AA),B(BB)
      {}
    };

  template<class MAT, class MATB>
    inline MpM<MAT, MATB> operator+(const MAT& AA, const MATB& BB) {
    return MpM<MAT, MATB>(AA, BB);
  }
  
  /*
  template<class MAT, class MATB>
    inline MM<MAT, MATB> operator*(const MT<MAT>& mta, const MT<MATB>& mtb) { 
    return MM<MAT, MATB>(mta.A, mtb.A, mta.tA, mtb.tA);
  }
  */
  /*
  template<class MAT, class MATB>
    inline MM<MAT, MATB> operator*(const MAT& AA, const MT<MATB>& mtb) { 
    return MM<MAT, MATB>(AA, mtb.A, false, mtb.tA);
  }
  template<class MAT, class MATB>
    inline MM<MAT, MATB> operator*(const MT<MAT>& mta, const MATB& BB) { 
    return MM<MAT, MATB>(mta.A, BB, mta.tA, false);
  }
  template<class MAT, class MATB>
    inline MM<MAT, MATB> operator*(const MAT& AA, const MATB& BB) { 
    return MM<MAT, MATB>(AA, BB, false, false);
  }
  */

  template<class SCAL, class MAT, class MATB = MAT>
    struct SMM {
      const SCAL alpha;
      const MAT& A;
      const MATB& B;
      const bool tA;
      const bool tB;
      SMM(const MM<MAT, MATB>& mm)
	:A(mm.A),B(mm.B),alpha(1), tA(mm.tA), tB(mm.tB)
      {}
      SMM(const MAT& AA,const MATB& BB, 
	  const bool tAA, const bool tBB,
	  const SCAL a = 1)
	:A(AA), B(BB), tA(tAA), tB(tBB), alpha(a)
      {}
    };
  
  template<class SCAL, class MAT, class MATB>
    inline SMM<SCAL, MAT, MATB> 
    operator*(const SM<SCAL, MAT>& sm,const MT<MATB>& mtb) {
    return SMM<SCAL, MAT, MATB>(sm.A, mtb.A, sm.tA, mtb.tA, sm.alpha); 
  }

  template<class SCAL, class MAT, class MATB>
    inline SMM<SCAL, MAT, MATB> 
    operator*(const SM<SCAL, MAT>& sm,const MATB& BB) {
    return SMM<SCAL, MAT, MATB>(sm.A, BB, sm.tA, false, sm.alpha); 
  }
  
 template<class SCAL, class MATC, class MATA = MATC, class MATB = MATC>
   struct SMMpSM {
     const SCAL alpha;
     const MATA& A;
     const MATB& B;
     const SCAL beta;
     const MATC& C;
     const bool tA;
     const bool tB;
     SMMpSM(const MATA& AA, const MATB& BB, const MATC& CC, 
	    const bool tAA, const bool tBB,
	    const SCAL a=1, const SCAL b=1)
       :A(AA), B(BB), C(CC), alpha(a), beta(b), tA(tAA), tB(tBB)
     {} 
   };

 template<class SCAL, class MATC, class MATA, class MATB>
   inline SMMpSM<SCAL, MATC, MATA, MATB> 
   operator+(const SMM<SCAL, MATA, MATB>& smm, const SM<SCAL, MATC>& sm) {
   return SMMpSM<SCAL, MATC, MATA, MATB>
     (smm.A, smm.B, sm.A, smm.tA, smm.tB, smm.alpha, sm.alpha);
 }
#if 0

  template<class SCAL, class MATC, class MATA, class MATB>
    inline SMMpSM<SCAL, MATC, MATA, MATB> 
    operator+(const SMM<SCAL, MATA, MATB>& smm, MATC& CC) {
    return SMMpSM<SCAL, MATC, MATA, MATB>
      (smm.A, smm.B, CC, smm.tA, smm.tB, smm.alpha, 1);
  }
  template<class SCAL, class MATC, class MATA, class MATB>
    inline SMMpSM<SCAL, MATC, MATA, MATB> 
    operator+(const MM<MATA, MATB>& mm, const SM<SCAL, MATC>& sm) {
    return SMMpSM<SCAL, MATC, MATA, MATB>
      (mm.A, mm.B, sm.A, mm.tA, mm.tB, 1, sm.alpha);
  }
#endif

  
  template<class SCAL, class MAT>
    struct SM2pSM {
      const SCAL alpha;
      const MAT& A;
      const SCAL beta;
      const MAT& C;
      SM2pSM(const MAT& AA, const MAT& CC, const SCAL a = 1, const SCAL b = 0)
	: A(AA), alpha(a), C(CC), beta(b)
      {}
    };
  
  template<class SCAL, class MAT>
    inline SM2pSM<SCAL, MAT> 
    operator+(const SM2<SCAL, MAT>& sm2, const SM<SCAL, MAT> sm) {
    return SM2pSM<SCAL, MAT>(sm2.A, sm.A, sm2.alpha, sm.alpha); 
  }



  /* Done so far with new transpose */

template<class MAT>
    struct MMpM {
    const MAT& A;
    const MAT& B;
    const MAT& C;
    MMpM(const MAT& AA, const MAT& BB, const MAT& CC)
      :A(AA),B(BB),C(CC)
      {} 
  };


  template<class SCAL, class MAT>
    struct SMpSM {
    const SCAL alpha, beta;
    const MAT& A, B;
    SMpSM(const MAT& AA, const MAT& BB,
	  const SCAL scalar_a=1, const SCAL scalar_b=1)
      :A(AA), B(BB), alpha(scalar_a), beta(scalar_b)
      {}
  };
  
  template<class SCAL, class MAT>
    inline SMpSM<SCAL, MAT> 
    operator+(const SM<SCAL, MAT> sm1, const SM<SCAL, MAT> sm2 ) {
    return SMpSM<SCAL, MAT>(sm1.A, sm2.A, sm1.alpha, sm2.alpha);
  }

  /*
  template<class MAT>
    struct MpM {
    const MAT& A;
    const MAT& B;
    MpM(const MAT& AA,const MAT& BB)
      :A(AA),B(BB)
      {}
  };
  
  template<class MAT>
    inline MpM<MAT> operator+(const MAT& A, const MAT& B) { 
    return MpM<MAT>(A,B);
  }
  */  
  template<class MAT>
    struct MmM {
    const MAT& A;
    const MAT& B;
    MmM(const MAT& AA,const MAT& BB)
      :A(AA),B(BB)
      {}
  };
  
  template<class MAT>
    inline MmM<MAT> operator-(const MAT& A, const MAT& B) { 
    return MmM<MAT>(A,B);
  }
  

  



  /*onodig finns redan för SMM
    template<class MAT>
    inline MMpM<MAT> operator+(const MM<MAT>& mm, const MAT& CC)
    {
    return MMpM<MAT>(mm.A,mm.B,CC);
    }*/


  /*Maste ligga i arvda klassen!!*/
  /*
    Matrix::Matrix(const sMMmul& mm)
    :nrofrows(mm.A.nrofrows),nrofcols(mm.B.nrofcols)
    {
    this.multiply(mm.A,mm.B,*this,mm.tA,mm.tB,mm.alpha,0);
    }
    Matrix::Matrix(const sMMmulsMadd& mm)
    :nrofrows(mm.A.nrofrows),nrofcols(mm.B.nrofcols)
    {
    this->multiply(mm.A,mm.B,mm.C,mm.tA,mm.tB,mm.alpha,mm.beta);
    }

  */
#endif
} /* end namespace mat */
#endif