1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file matrix_proxy.h Proxy structs used by the matrix API
*
* This file contains proxy structs that are used by the matrix
* API classes to enable operator syntax when using the API.
*
* Copyright(c) Emanuel Rubensson 2005
*
* @author Emanuel Rubensson @a responsible @a author
* @date February 2005
*
*/
#ifndef MAT_MATRIX_PROXY
#define MAT_MATRIX_PROXY
namespace mat {
/*********** New code */
/** This proxy expresses the result of multiplication of two objects,
* of possibly different types, TX and TY.
* Primary application is for scalars, matrices, and transposed matrices.
*/
template<typename TX, typename TY>
struct XY {
TX const & A;
TY const & B;
bool const tA;
bool const tB;
XY(TX const & AA, TY const & BB,
bool const tAA = false, bool const tBB = false)
:A(AA), B(BB), tA(tAA), tB(tBB)
{}
};
/** This proxy expresses the result of multiplication of three objects,
* of possibly different types, TX, TY, and TZ.
* Primary application is for scalars, matrices, and transposed matrices.
*/
template<typename TX, typename TY, typename TZ>
struct XYZ {
TX const & A;
TY const & B;
TZ const & C;
bool const tA;
bool const tB;
bool const tC;
XYZ(TX const & AA, TY const & BB, TZ const & CC,
bool const tAA = false,
bool const tBB = false,
bool const tCC = false)
:A(AA), B(BB), C(CC), tA(tAA), tB(tBB), tC(tCC)
{}
};
/** This proxy expresses the result of multiplication of three objects
* added to two other multiplied objects.
* All objects may have different types, TX, TY, TZ, TU, and TV.
* Primary application is for scalars, matrices, and transposed matrices.
*/
template<typename TX, typename TY, typename TZ, typename TU, typename TV>
struct XYZpUV {
TX const & A;
TY const & B;
TZ const & C;
TU const & D;
TV const & E;
bool const tA;
bool const tB;
bool const tC;
bool const tD;
bool const tE;
XYZpUV(TX const & AA, TY const & BB, TZ const & CC,
TU const & DD, TV const & EE,
bool const tAA = false,
bool const tBB = false,
bool const tCC = false,
bool const tDD = false,
bool const tEE = false)
:A(AA), B(BB), C(CC), D(DD), E(EE),
tA(tAA), tB(tBB), tC(tCC), tD(tDD), tE(tEE)
{}
};
/** This proxy expresses the result of transposition of an object
* of type TX.
* Primary application is for matrices and transposed matrices.
* @see transpose(TX const &)
*/
template<typename TX>
struct Xtrans {
TX const & A;
bool const tA;
explicit Xtrans(TX const & AA, bool const tAA = false)
:A(AA), tA(tAA)
{}
};
/** Transposition.
* Returns a transposition proxy of an object of type TX.
* @see Xtrans
*/
template<typename TX>
inline Xtrans<TX> transpose(TX const & A) {
return Xtrans<TX>(A,true);
}
/** Transposition.
* Returns a transposition proxy of an object of type Xtrans<TX>.
* Only for correct treatment of repeated transposition,
* e.g. transpose(transpose(A))
* @see Xtrans
* @see transpose(TX const &)
*/
template<typename TX>
inline Xtrans<TX> transpose(const Xtrans<TX>& xtrans) {
return Xtrans<TX>(xtrans.A, !xtrans.tA);
}
/* Some operators */
/** Multiplication of two transposition proxys holding objects of
* type TX and TY respectively.
* Returns multiplication proxy XY.
* @see XY
* @see Xtrans
* @see operator*(TX const &, Xtrans<TY> const &)
* @see operator*(Xtrans<TX> const &, TY const &)
* @see operator*(TX const &, TY const &)
*/
template<typename TX, typename TY>
inline XY<TX, TY> operator*(Xtrans<TX> const & trAA,
Xtrans<TY> const & trBB) {
return XY<TX, TY>(trAA.A, trBB.A, trAA.tA, trBB.tA);
}
/** Multiplication of an object of type TX with a tranposition proxy
* holding an object of type TY.
* Returns multiplication proxy XY.
* @see XY
* @see Xtrans
* @see operator*(Xtrans<TX> const &, Xtrans<TY> const &)
* @see operator*(Xtrans<TX> const &, TY const &)
* @see operator*(TX const &, TY const &)
*/
template<typename TX, typename TY>
inline XY<TX, TY> operator*(TX const & AA,
Xtrans<TY> const & trBB) {
return XY<TX, TY>(AA, trBB.A, false, trBB.tA);
}
/** Multiplication of a tranposition proxy holding an object of type TX
* with an object of type TY.
* Returns multiplication proxy XY.
* @see XY
* @see Xtrans
* @see operator*(Xtrans<TX> const &, Xtrans<TY> const &)
* @see operator*(TX const &, Xtrans<TY> const &)
* @see operator*(TX const &, TY const &)
*/
template<typename TX, typename TY>
inline XY<TX, TY> operator*(Xtrans<TX> const & trAA,
TY const & BB) {
return XY<TX, TY>(trAA.A, BB, trAA.tA, false);
}
/** Multiplication of an object of type TX with an object of type TY.
* Returns multiplication proxy XY.
* @see XY
* @see operator*(Xtrans<TX> const &, Xtrans<TY> const &)
* @see operator*(TX const &, Xtrans<TY> const &)
* @see operator*(Xtrans<TX> const &, TY const &)
*/
template<typename TX, typename TY>
inline XY<TX, TY> operator*(TX const & AA,
TY const & BB) {
return XY<TX, TY>(AA, BB, false, false);
}
/** Multiplication of a multiplication proxy XY with a transposition
* proxy Xtrans.
* Returns multiplication proxy XYZ.
* @see XY
* @see XYZ
* @see Xtrans
*/
template<typename TX, typename TY, typename TZ>
inline XYZ<TX, TY, TZ>
operator*(XY<TX, TY> const & AB, Xtrans<TZ> const & trCC) {
return XYZ<TX, TY, TZ>(AB.A, AB.B, trCC.A, AB.tA, AB.tB, trCC.tA);
}
/** Multiplication of a multiplication proxy XY with an object of type TZ.
* Returns multiplication proxy XYZ.
* @see XY
* @see XYZ
*/
template<typename TX, typename TY, typename TZ>
inline XYZ<TX, TY, TZ>
operator*(XY<TX, TY> const & AB, TZ const & CC) {
return XYZ<TX, TY, TZ>(AB.A, AB.B, CC, AB.tA, AB.tB, false);
}
/** Addition of two multiplication proxys XYZ and XY.
* Returns multiplication and addition proxy XYZpUV.
* @see XY
* @see XYZ
* @see XYZpUV
*/
template<typename TX, typename TY, typename TZ, typename TU, typename TV>
inline XYZpUV<TX, TY, TZ, TU, TV>
operator+(XYZ<TX, TY, TZ> const & ABC, XY<TU, TV> const & DE) {
return XYZpUV<TX, TY, TZ, TU, TV>(ABC.A, ABC.B, ABC.C, DE.A, DE.B, ABC.tA, ABC.tB, ABC.tC, DE.tA, DE.tB);
}
/** This proxy expresses the result of addition of two objects,
* of possibly different types, TX and TY.
* Primary application is for scalars, matrices, and transposed matrices.
*/
template<typename TX, typename TY>
struct XpY {
const TX& A;
const TY& B;
XpY(const TX& AA,const TY& BB)
:A(AA),B(BB)
{}
};
/** Addition of two objects of type TX and TY.
* @see XpY
*/
template<typename TX, typename TY>
inline XpY<TX, TY> operator+(TX const & AA, TY const & BB) {
return XpY<TX, TY>(AA, BB);
}
/** This proxy expresses the result of substraction of two objects,
* of possibly different types, TX and TY.
* Primary application is for scalars, matrices, and transposed matrices.
*/
template<typename TX, typename TY>
struct XmY {
const TX& A;
const TY& B;
XmY(const TX& AA,const TY& BB)
:A(AA),B(BB)
{}
};
/** Substraction of two objects of type TX and TY.
* @see XmY
*/
template<typename TX, typename TY>
inline XmY<TX, TY> operator-(TX const & AA, TY const & BB) {
return XmY<TX, TY>(AA, BB);
}
/************* New code ends */
#if 0
template<class MAT>
struct M2 {
const MAT& A;
M2(const MAT& AA)
:A(AA)
{}
};
template<class MAT>
inline M2<MAT> square(const MAT& A) {
return M2<MAT>(A);
}
template<class SCAL, class MAT>
struct SM2 {
const SCAL alpha;
const MAT& A;
SM2(const MAT& AA, const SCAL a = 1)
: A(AA), alpha(a)
{}
SM2(const M2<MAT>& m2)
:A(m2.A), alpha(1)
{}
};
template<class SCAL, class MAT>
inline SM2<SCAL, MAT>
operator*(const SCAL s, const M2<MAT>& m2) {
return SM2<SCAL, MAT>(m2.A, s);
}
template<class MAT>
struct MT {
const MAT& A;
const bool tA;
MT(const MAT& AA, const bool tAA = false)
:A(AA), tA(tAA)
{}
};
template<class MAT>
inline MT<MAT> transpose(const MAT& A) {
return MT<MAT>(A,true);
}
template<class MAT>
inline MT<MAT> transpose(const MT<MAT>& mt) {
return MT<MAT>(mt.A, !mt.tA);
}
template<class SCAL, class MAT>
struct SM {
const SCAL alpha;
const MAT& A;
const bool tA;
SM(const MAT& AA, const SCAL scalar = 1, const bool tAA = false)
:A(AA),alpha(scalar), tA(tAA)
{}
};
template<class SCAL, class MAT>
inline SM<SCAL, MAT> operator*(const SCAL scalar, const MT<MAT>& mta) {
return SM<SCAL, MAT>(mta.A,scalar, mta.tA);
}
template<class SCAL, class MAT>
inline SM<SCAL, MAT> operator*(const SCAL scalar, const MAT& AA) {
return SM<SCAL, MAT>(AA, scalar, false);
}
template<class MAT, class MATB = MAT>
struct MM {
const MAT& A;
const MATB& B;
const bool tA;
const bool tB;
MM(const MAT& AA,const MATB& BB, const bool tAA, const bool tBB)
:A(AA),B(BB), tA(tAA), tB(tBB)
{}
};
template<class MAT, class MATB = MAT>
struct MpM {
const MAT& A;
const MATB& B;
MpM(const MAT& AA,const MATB& BB)
:A(AA),B(BB)
{}
};
template<class MAT, class MATB>
inline MpM<MAT, MATB> operator+(const MAT& AA, const MATB& BB) {
return MpM<MAT, MATB>(AA, BB);
}
/*
template<class MAT, class MATB>
inline MM<MAT, MATB> operator*(const MT<MAT>& mta, const MT<MATB>& mtb) {
return MM<MAT, MATB>(mta.A, mtb.A, mta.tA, mtb.tA);
}
*/
/*
template<class MAT, class MATB>
inline MM<MAT, MATB> operator*(const MAT& AA, const MT<MATB>& mtb) {
return MM<MAT, MATB>(AA, mtb.A, false, mtb.tA);
}
template<class MAT, class MATB>
inline MM<MAT, MATB> operator*(const MT<MAT>& mta, const MATB& BB) {
return MM<MAT, MATB>(mta.A, BB, mta.tA, false);
}
template<class MAT, class MATB>
inline MM<MAT, MATB> operator*(const MAT& AA, const MATB& BB) {
return MM<MAT, MATB>(AA, BB, false, false);
}
*/
template<class SCAL, class MAT, class MATB = MAT>
struct SMM {
const SCAL alpha;
const MAT& A;
const MATB& B;
const bool tA;
const bool tB;
SMM(const MM<MAT, MATB>& mm)
:A(mm.A),B(mm.B),alpha(1), tA(mm.tA), tB(mm.tB)
{}
SMM(const MAT& AA,const MATB& BB,
const bool tAA, const bool tBB,
const SCAL a = 1)
:A(AA), B(BB), tA(tAA), tB(tBB), alpha(a)
{}
};
template<class SCAL, class MAT, class MATB>
inline SMM<SCAL, MAT, MATB>
operator*(const SM<SCAL, MAT>& sm,const MT<MATB>& mtb) {
return SMM<SCAL, MAT, MATB>(sm.A, mtb.A, sm.tA, mtb.tA, sm.alpha);
}
template<class SCAL, class MAT, class MATB>
inline SMM<SCAL, MAT, MATB>
operator*(const SM<SCAL, MAT>& sm,const MATB& BB) {
return SMM<SCAL, MAT, MATB>(sm.A, BB, sm.tA, false, sm.alpha);
}
template<class SCAL, class MATC, class MATA = MATC, class MATB = MATC>
struct SMMpSM {
const SCAL alpha;
const MATA& A;
const MATB& B;
const SCAL beta;
const MATC& C;
const bool tA;
const bool tB;
SMMpSM(const MATA& AA, const MATB& BB, const MATC& CC,
const bool tAA, const bool tBB,
const SCAL a=1, const SCAL b=1)
:A(AA), B(BB), C(CC), alpha(a), beta(b), tA(tAA), tB(tBB)
{}
};
template<class SCAL, class MATC, class MATA, class MATB>
inline SMMpSM<SCAL, MATC, MATA, MATB>
operator+(const SMM<SCAL, MATA, MATB>& smm, const SM<SCAL, MATC>& sm) {
return SMMpSM<SCAL, MATC, MATA, MATB>
(smm.A, smm.B, sm.A, smm.tA, smm.tB, smm.alpha, sm.alpha);
}
#if 0
template<class SCAL, class MATC, class MATA, class MATB>
inline SMMpSM<SCAL, MATC, MATA, MATB>
operator+(const SMM<SCAL, MATA, MATB>& smm, MATC& CC) {
return SMMpSM<SCAL, MATC, MATA, MATB>
(smm.A, smm.B, CC, smm.tA, smm.tB, smm.alpha, 1);
}
template<class SCAL, class MATC, class MATA, class MATB>
inline SMMpSM<SCAL, MATC, MATA, MATB>
operator+(const MM<MATA, MATB>& mm, const SM<SCAL, MATC>& sm) {
return SMMpSM<SCAL, MATC, MATA, MATB>
(mm.A, mm.B, sm.A, mm.tA, mm.tB, 1, sm.alpha);
}
#endif
template<class SCAL, class MAT>
struct SM2pSM {
const SCAL alpha;
const MAT& A;
const SCAL beta;
const MAT& C;
SM2pSM(const MAT& AA, const MAT& CC, const SCAL a = 1, const SCAL b = 0)
: A(AA), alpha(a), C(CC), beta(b)
{}
};
template<class SCAL, class MAT>
inline SM2pSM<SCAL, MAT>
operator+(const SM2<SCAL, MAT>& sm2, const SM<SCAL, MAT> sm) {
return SM2pSM<SCAL, MAT>(sm2.A, sm.A, sm2.alpha, sm.alpha);
}
/* Done so far with new transpose */
template<class MAT>
struct MMpM {
const MAT& A;
const MAT& B;
const MAT& C;
MMpM(const MAT& AA, const MAT& BB, const MAT& CC)
:A(AA),B(BB),C(CC)
{}
};
template<class SCAL, class MAT>
struct SMpSM {
const SCAL alpha, beta;
const MAT& A, B;
SMpSM(const MAT& AA, const MAT& BB,
const SCAL scalar_a=1, const SCAL scalar_b=1)
:A(AA), B(BB), alpha(scalar_a), beta(scalar_b)
{}
};
template<class SCAL, class MAT>
inline SMpSM<SCAL, MAT>
operator+(const SM<SCAL, MAT> sm1, const SM<SCAL, MAT> sm2 ) {
return SMpSM<SCAL, MAT>(sm1.A, sm2.A, sm1.alpha, sm2.alpha);
}
/*
template<class MAT>
struct MpM {
const MAT& A;
const MAT& B;
MpM(const MAT& AA,const MAT& BB)
:A(AA),B(BB)
{}
};
template<class MAT>
inline MpM<MAT> operator+(const MAT& A, const MAT& B) {
return MpM<MAT>(A,B);
}
*/
template<class MAT>
struct MmM {
const MAT& A;
const MAT& B;
MmM(const MAT& AA,const MAT& BB)
:A(AA),B(BB)
{}
};
template<class MAT>
inline MmM<MAT> operator-(const MAT& A, const MAT& B) {
return MmM<MAT>(A,B);
}
/*onodig finns redan för SMM
template<class MAT>
inline MMpM<MAT> operator+(const MM<MAT>& mm, const MAT& CC)
{
return MMpM<MAT>(mm.A,mm.B,CC);
}*/
/*Maste ligga i arvda klassen!!*/
/*
Matrix::Matrix(const sMMmul& mm)
:nrofrows(mm.A.nrofrows),nrofcols(mm.B.nrofcols)
{
this.multiply(mm.A,mm.B,*this,mm.tA,mm.tB,mm.alpha,0);
}
Matrix::Matrix(const sMMmulsMadd& mm)
:nrofrows(mm.A.nrofrows),nrofcols(mm.B.nrofcols)
{
this->multiply(mm.A,mm.B,mm.C,mm.tA,mm.tB,mm.alpha,mm.beta);
}
*/
#endif
} /* end namespace mat */
#endif
|