1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/* This file belongs to the template_lapack part of the Ergo source
* code. The source files in the template_lapack directory are modified
* versions of files originally distributed as CLAPACK, see the
* Copyright/license notice in the file template_lapack/COPYING.
*/
#ifndef TEMPLATE_BLAS_SYR2K_HEADER
#define TEMPLATE_BLAS_SYR2K_HEADER
template<class Treal>
int template_blas_syr2k(const char *uplo, const char *trans, const integer *n,
const integer *k, const Treal *alpha, const Treal *a,
const integer *lda, const Treal *b, const integer *ldb,
const Treal *beta, Treal *c__, const integer *ldc)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
i__3;
/* Local variables */
integer info;
Treal temp1, temp2;
integer i__, j, l;
integer nrowa;
logical upper;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]
#define c___ref(a_1,a_2) c__[(a_2)*c_dim1 + a_1]
/* Purpose
=======
DSYR2K performs one of the symmetric rank 2k operations
C := alpha*A*B' + alpha*B*A' + beta*C,
or
C := alpha*A'*B + alpha*B'*A + beta*C,
where alpha and beta are scalars, C is an n by n symmetric matrix
and A and B are n by k matrices in the first case and k by n
matrices in the second case.
Parameters
==========
UPLO - CHARACTER*1.
On entry, UPLO specifies whether the upper or lower
triangular part of the array C is to be referenced as
follows:
UPLO = 'U' or 'u' Only the upper triangular part of C
is to be referenced.
UPLO = 'L' or 'l' Only the lower triangular part of C
is to be referenced.
Unchanged on exit.
TRANS - CHARACTER*1.
On entry, TRANS specifies the operation to be performed as
follows:
TRANS = 'N' or 'n' C := alpha*A*B' + alpha*B*A' +
beta*C.
TRANS = 'T' or 't' C := alpha*A'*B + alpha*B'*A +
beta*C.
TRANS = 'C' or 'c' C := alpha*A'*B + alpha*B'*A +
beta*C.
Unchanged on exit.
N - INTEGER.
On entry, N specifies the order of the matrix C. N must be
at least zero.
Unchanged on exit.
K - INTEGER.
On entry with TRANS = 'N' or 'n', K specifies the number
of columns of the matrices A and B, and on entry with
TRANS = 'T' or 't' or 'C' or 'c', K specifies the number
of rows of the matrices A and B. K must be at least zero.
Unchanged on exit.
ALPHA - DOUBLE PRECISION.
On entry, ALPHA specifies the scalar alpha.
Unchanged on exit.
A - DOUBLE PRECISION array of DIMENSION ( LDA, ka ), where ka is
k when TRANS = 'N' or 'n', and is n otherwise.
Before entry with TRANS = 'N' or 'n', the leading n by k
part of the array A must contain the matrix A, otherwise
the leading k by n part of the array A must contain the
matrix A.
Unchanged on exit.
LDA - INTEGER.
On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program. When TRANS = 'N' or 'n'
then LDA must be at least max( 1, n ), otherwise LDA must
be at least max( 1, k ).
Unchanged on exit.
B - DOUBLE PRECISION array of DIMENSION ( LDB, kb ), where kb is
k when TRANS = 'N' or 'n', and is n otherwise.
Before entry with TRANS = 'N' or 'n', the leading n by k
part of the array B must contain the matrix B, otherwise
the leading k by n part of the array B must contain the
matrix B.
Unchanged on exit.
LDB - INTEGER.
On entry, LDB specifies the first dimension of B as declared
in the calling (sub) program. When TRANS = 'N' or 'n'
then LDB must be at least max( 1, n ), otherwise LDB must
be at least max( 1, k ).
Unchanged on exit.
BETA - DOUBLE PRECISION.
On entry, BETA specifies the scalar beta.
Unchanged on exit.
C - DOUBLE PRECISION array of DIMENSION ( LDC, n ).
Before entry with UPLO = 'U' or 'u', the leading n by n
upper triangular part of the array C must contain the upper
triangular part of the symmetric matrix and the strictly
lower triangular part of C is not referenced. On exit, the
upper triangular part of the array C is overwritten by the
upper triangular part of the updated matrix.
Before entry with UPLO = 'L' or 'l', the leading n by n
lower triangular part of the array C must contain the lower
triangular part of the symmetric matrix and the strictly
upper triangular part of C is not referenced. On exit, the
lower triangular part of the array C is overwritten by the
lower triangular part of the updated matrix.
LDC - INTEGER.
On entry, LDC specifies the first dimension of C as declared
in the calling (sub) program. LDC must be at least
max( 1, n ).
Unchanged on exit.
Level 3 Blas routine.
-- Written on 8-February-1989.
Jack Dongarra, Argonne National Laboratory.
Iain Duff, AERE Harwell.
Jeremy Du Croz, Numerical Algorithms Group Ltd.
Sven Hammarling, Numerical Algorithms Group Ltd.
Test the input parameters.
Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
c_dim1 = *ldc;
c_offset = 1 + c_dim1 * 1;
c__ -= c_offset;
/* Function Body */
if (template_blas_lsame(trans, "N")) {
nrowa = *n;
} else {
nrowa = *k;
}
upper = template_blas_lsame(uplo, "U");
info = 0;
if (! upper && ! template_blas_lsame(uplo, "L")) {
info = 1;
} else if (! template_blas_lsame(trans, "N") && ! template_blas_lsame(trans,
"T") && ! template_blas_lsame(trans, "C")) {
info = 2;
} else if (*n < 0) {
info = 3;
} else if (*k < 0) {
info = 4;
} else if (*lda < maxMACRO(1,nrowa)) {
info = 7;
} else if (*ldb < maxMACRO(1,nrowa)) {
info = 9;
} else if (*ldc < maxMACRO(1,*n)) {
info = 12;
}
if (info != 0) {
template_blas_erbla("SYR2K ", &info);
return 0;
}
/* Quick return if possible. */
if (*n == 0 || ( (*alpha == 0. || *k == 0) && *beta == 1. ) ) {
return 0;
}
/* And when alpha.eq.zero. */
if (*alpha == 0.) {
if (upper) {
if (*beta == 0.) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
c___ref(i__, j) = 0.;
/* L10: */
}
/* L20: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
c___ref(i__, j) = *beta * c___ref(i__, j);
/* L30: */
}
/* L40: */
}
}
} else {
if (*beta == 0.) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = j; i__ <= i__2; ++i__) {
c___ref(i__, j) = 0.;
/* L50: */
}
/* L60: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = j; i__ <= i__2; ++i__) {
c___ref(i__, j) = *beta * c___ref(i__, j);
/* L70: */
}
/* L80: */
}
}
}
return 0;
}
/* Start the operations. */
if (template_blas_lsame(trans, "N")) {
/* Form C := alpha*A*B' + alpha*B*A' + C. */
if (upper) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (*beta == 0.) {
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
c___ref(i__, j) = 0.;
/* L90: */
}
} else if (*beta != 1.) {
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
c___ref(i__, j) = *beta * c___ref(i__, j);
/* L100: */
}
}
i__2 = *k;
for (l = 1; l <= i__2; ++l) {
if (a_ref(j, l) != 0. || b_ref(j, l) != 0.) {
temp1 = *alpha * b_ref(j, l);
temp2 = *alpha * a_ref(j, l);
i__3 = j;
for (i__ = 1; i__ <= i__3; ++i__) {
c___ref(i__, j) = c___ref(i__, j) + a_ref(i__, l)
* temp1 + b_ref(i__, l) * temp2;
/* L110: */
}
}
/* L120: */
}
/* L130: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (*beta == 0.) {
i__2 = *n;
for (i__ = j; i__ <= i__2; ++i__) {
c___ref(i__, j) = 0.;
/* L140: */
}
} else if (*beta != 1.) {
i__2 = *n;
for (i__ = j; i__ <= i__2; ++i__) {
c___ref(i__, j) = *beta * c___ref(i__, j);
/* L150: */
}
}
i__2 = *k;
for (l = 1; l <= i__2; ++l) {
if (a_ref(j, l) != 0. || b_ref(j, l) != 0.) {
temp1 = *alpha * b_ref(j, l);
temp2 = *alpha * a_ref(j, l);
i__3 = *n;
for (i__ = j; i__ <= i__3; ++i__) {
c___ref(i__, j) = c___ref(i__, j) + a_ref(i__, l)
* temp1 + b_ref(i__, l) * temp2;
/* L160: */
}
}
/* L170: */
}
/* L180: */
}
}
} else {
/* Form C := alpha*A'*B + alpha*B'*A + C. */
if (upper) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
temp1 = 0.;
temp2 = 0.;
i__3 = *k;
for (l = 1; l <= i__3; ++l) {
temp1 += a_ref(l, i__) * b_ref(l, j);
temp2 += b_ref(l, i__) * a_ref(l, j);
/* L190: */
}
if (*beta == 0.) {
c___ref(i__, j) = *alpha * temp1 + *alpha * temp2;
} else {
c___ref(i__, j) = *beta * c___ref(i__, j) + *alpha *
temp1 + *alpha * temp2;
}
/* L200: */
}
/* L210: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = j; i__ <= i__2; ++i__) {
temp1 = 0.;
temp2 = 0.;
i__3 = *k;
for (l = 1; l <= i__3; ++l) {
temp1 += a_ref(l, i__) * b_ref(l, j);
temp2 += b_ref(l, i__) * a_ref(l, j);
/* L220: */
}
if (*beta == 0.) {
c___ref(i__, j) = *alpha * temp1 + *alpha * temp2;
} else {
c___ref(i__, j) = *beta * c___ref(i__, j) + *alpha *
temp1 + *alpha * temp2;
}
/* L230: */
}
/* L240: */
}
}
}
return 0;
/* End of DSYR2K. */
} /* dsyr2k_ */
#undef c___ref
#undef b_ref
#undef a_ref
#endif
|