1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/* This file belongs to the template_lapack part of the Ergo source
* code. The source files in the template_lapack directory are modified
* versions of files originally distributed as CLAPACK, see the
* Copyright/license notice in the file template_lapack/COPYING.
*/
#ifndef TEMPLATE_LAPACK_GGBAK_HEADER
#define TEMPLATE_LAPACK_GGBAK_HEADER
template<class Treal>
int template_lapack_ggbak(const char *job, const char *side, const integer *n, const integer *ilo,
const integer *ihi, const Treal *lscale, const Treal *rscale, const integer *m,
Treal *v, const integer *ldv, integer *info)
{
/* -- LAPACK routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
September 30, 1994
Purpose
=======
DGGBAK forms the right or left eigenvectors of a real generalized
eigenvalue problem A*x = lambda*B*x, by backward transformation on
the computed eigenvectors of the balanced pair of matrices output by
DGGBAL.
Arguments
=========
JOB (input) CHARACTER*1
Specifies the type of backward transformation required:
= 'N': do nothing, return immediately;
= 'P': do backward transformation for permutation only;
= 'S': do backward transformation for scaling only;
= 'B': do backward transformations for both permutation and
scaling.
JOB must be the same as the argument JOB supplied to DGGBAL.
SIDE (input) CHARACTER*1
= 'R': V contains right eigenvectors;
= 'L': V contains left eigenvectors.
N (input) INTEGER
The number of rows of the matrix V. N >= 0.
ILO (input) INTEGER
IHI (input) INTEGER
The integers ILO and IHI determined by DGGBAL.
1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.
LSCALE (input) DOUBLE PRECISION array, dimension (N)
Details of the permutations and/or scaling factors applied
to the left side of A and B, as returned by DGGBAL.
RSCALE (input) DOUBLE PRECISION array, dimension (N)
Details of the permutations and/or scaling factors applied
to the right side of A and B, as returned by DGGBAL.
M (input) INTEGER
The number of columns of the matrix V. M >= 0.
V (input/output) DOUBLE PRECISION array, dimension (LDV,M)
On entry, the matrix of right or left eigenvectors to be
transformed, as returned by DTGEVC.
On exit, V is overwritten by the transformed eigenvectors.
LDV (input) INTEGER
The leading dimension of the matrix V. LDV >= max(1,N).
INFO (output) INTEGER
= 0: successful exit.
< 0: if INFO = -i, the i-th argument had an illegal value.
Further Details
===============
See R.C. Ward, Balancing the generalized eigenvalue problem,
SIAM J. Sci. Stat. Comp. 2 (1981), 141-152.
=====================================================================
Test the input parameters
Parameter adjustments */
/* System generated locals */
integer v_dim1, v_offset, i__1;
/* Local variables */
integer i__, k;
logical leftv;
logical rightv;
#define v_ref(a_1,a_2) v[(a_2)*v_dim1 + a_1]
--lscale;
--rscale;
v_dim1 = *ldv;
v_offset = 1 + v_dim1 * 1;
v -= v_offset;
/* Function Body */
rightv = template_blas_lsame(side, "R");
leftv = template_blas_lsame(side, "L");
*info = 0;
if (! template_blas_lsame(job, "N") && ! template_blas_lsame(job, "P") && ! template_blas_lsame(job, "S")
&& ! template_blas_lsame(job, "B")) {
*info = -1;
} else if (! rightv && ! leftv) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (*ilo < 1) {
*info = -4;
} else if (*ihi < *ilo || *ihi > maxMACRO(1,*n)) {
*info = -5;
} else if (*m < 0) {
*info = -6;
} else if (*ldv < maxMACRO(1,*n)) {
*info = -10;
}
if (*info != 0) {
i__1 = -(*info);
template_blas_erbla("GGBAK ", &i__1);
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
if (*m == 0) {
return 0;
}
if (template_blas_lsame(job, "N")) {
return 0;
}
if (*ilo == *ihi) {
goto L30;
}
/* Backward balance */
if (template_blas_lsame(job, "S") || template_blas_lsame(job, "B")) {
/* Backward transformation on right eigenvectors */
if (rightv) {
i__1 = *ihi;
for (i__ = *ilo; i__ <= i__1; ++i__) {
template_blas_scal(m, &rscale[i__], &v_ref(i__, 1), ldv);
/* L10: */
}
}
/* Backward transformation on left eigenvectors */
if (leftv) {
i__1 = *ihi;
for (i__ = *ilo; i__ <= i__1; ++i__) {
template_blas_scal(m, &lscale[i__], &v_ref(i__, 1), ldv);
/* L20: */
}
}
}
/* Backward permutation */
L30:
if (template_blas_lsame(job, "P") || template_blas_lsame(job, "B")) {
/* Backward permutation on right eigenvectors */
if (rightv) {
if (*ilo == 1) {
goto L50;
}
for (i__ = *ilo - 1; i__ >= 1; --i__) {
k = (integer) rscale[i__];
if (k == i__) {
goto L40;
}
template_blas_swap(m, &v_ref(i__, 1), ldv, &v_ref(k, 1), ldv);
L40:
;
}
L50:
if (*ihi == *n) {
goto L70;
}
i__1 = *n;
for (i__ = *ihi + 1; i__ <= i__1; ++i__) {
k = (integer) rscale[i__];
if (k == i__) {
goto L60;
}
template_blas_swap(m, &v_ref(i__, 1), ldv, &v_ref(k, 1), ldv);
L60:
;
}
}
/* Backward permutation on left eigenvectors */
L70:
if (leftv) {
if (*ilo == 1) {
goto L90;
}
for (i__ = *ilo - 1; i__ >= 1; --i__) {
k = (integer) lscale[i__];
if (k == i__) {
goto L80;
}
template_blas_swap(m, &v_ref(i__, 1), ldv, &v_ref(k, 1), ldv);
L80:
;
}
L90:
if (*ihi == *n) {
goto L110;
}
i__1 = *n;
for (i__ = *ihi + 1; i__ <= i__1; ++i__) {
k = (integer) lscale[i__];
if (k == i__) {
goto L100;
}
template_blas_swap(m, &v_ref(i__, 1), ldv, &v_ref(k, 1), ldv);
L100:
;
}
}
}
L110:
return 0;
/* End of DGGBAK */
} /* dggbak_ */
#undef v_ref
#endif
|