File: template_lapack_ggev.h

package info (click to toggle)
ergo 3.8.2-1.1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 17,568 kB
  • sloc: cpp: 94,763; ansic: 17,785; sh: 10,701; makefile: 1,403; yacc: 127; lex: 116; awk: 23
file content (615 lines) | stat: -rw-r--r-- 18,712 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */
 
 /* This file belongs to the template_lapack part of the Ergo source 
  * code. The source files in the template_lapack directory are modified
  * versions of files originally distributed as CLAPACK, see the
  * Copyright/license notice in the file template_lapack/COPYING.
  */
 

#ifndef TEMPLATE_LAPACK_GGEV_HEADER
#define TEMPLATE_LAPACK_GGEV_HEADER


template<class Treal>
int template_lapack_ggev(const char *jobvl, const char *jobvr, const integer *n, Treal *
	a, const integer *lda, Treal *b, const integer *ldb, Treal *alphar, 
	Treal *alphai, Treal *beta, Treal *vl, const integer *ldvl, 
	Treal *vr, const integer *ldvr, Treal *work, const integer *lwork, 
	integer *info)
{
/*  -- LAPACK driver routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    DGGEV computes for a pair of N-by-N real nonsymmetric matrices (A,B)   
    the generalized eigenvalues, and optionally, the left and/or right   
    generalized eigenvectors.   

    A generalized eigenvalue for a pair of matrices (A,B) is a scalar   
    lambda or a ratio alpha/beta = lambda, such that A - lambda*B is   
    singular. It is usually represented as the pair (alpha,beta), as   
    there is a reasonable interpretation for beta=0, and even for both   
    being zero.   

    The right eigenvector v(j) corresponding to the eigenvalue lambda(j)   
    of (A,B) satisfies   

                     A * v(j) = lambda(j) * B * v(j).   

    The left eigenvector u(j) corresponding to the eigenvalue lambda(j)   
    of (A,B) satisfies   

                     u(j)**H * A  = lambda(j) * u(j)**H * B .   

    where u(j)**H is the conjugate-transpose of u(j).   


    Arguments   
    =========   

    JOBVL   (input) CHARACTER*1   
            = 'N':  do not compute the left generalized eigenvectors;   
            = 'V':  compute the left generalized eigenvectors.   

    JOBVR   (input) CHARACTER*1   
            = 'N':  do not compute the right generalized eigenvectors;   
            = 'V':  compute the right generalized eigenvectors.   

    N       (input) INTEGER   
            The order of the matrices A, B, VL, and VR.  N >= 0.   

    A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)   
            On entry, the matrix A in the pair (A,B).   
            On exit, A has been overwritten.   

    LDA     (input) INTEGER   
            The leading dimension of A.  LDA >= max(1,N).   

    B       (input/output) DOUBLE PRECISION array, dimension (LDB, N)   
            On entry, the matrix B in the pair (A,B).   
            On exit, B has been overwritten.   

    LDB     (input) INTEGER   
            The leading dimension of B.  LDB >= max(1,N).   

    ALPHAR  (output) DOUBLE PRECISION array, dimension (N)   
    ALPHAI  (output) DOUBLE PRECISION array, dimension (N)   
    BETA    (output) DOUBLE PRECISION array, dimension (N)   
            On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will   
            be the generalized eigenvalues.  If ALPHAI(j) is zero, then   
            the j-th eigenvalue is real; if positive, then the j-th and   
            (j+1)-st eigenvalues are a complex conjugate pair, with   
            ALPHAI(j+1) negative.   

            Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)   
            may easily over- or underflow, and BETA(j) may even be zero.   
            Thus, the user should avoid naively computing the ratio   
            alpha/beta.  However, ALPHAR and ALPHAI will be always less   
            than and usually comparable with norm(A) in magnitude, and   
            BETA always less than and usually comparable with norm(B).   

    VL      (output) DOUBLE PRECISION array, dimension (LDVL,N)   
            If JOBVL = 'V', the left eigenvectors u(j) are stored one   
            after another in the columns of VL, in the same order as   
            their eigenvalues. If the j-th eigenvalue is real, then   
            u(j) = VL(:,j), the j-th column of VL. If the j-th and   
            (j+1)-th eigenvalues form a complex conjugate pair, then   
            u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).   
            Each eigenvector will be scaled so the largest component have   
            abs(real part)+abs(imag. part)=1.   
            Not referenced if JOBVL = 'N'.   

    LDVL    (input) INTEGER   
            The leading dimension of the matrix VL. LDVL >= 1, and   
            if JOBVL = 'V', LDVL >= N.   

    VR      (output) DOUBLE PRECISION array, dimension (LDVR,N)   
            If JOBVR = 'V', the right eigenvectors v(j) are stored one   
            after another in the columns of VR, in the same order as   
            their eigenvalues. If the j-th eigenvalue is real, then   
            v(j) = VR(:,j), the j-th column of VR. If the j-th and   
            (j+1)-th eigenvalues form a complex conjugate pair, then   
            v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).   
            Each eigenvector will be scaled so the largest component have   
            abs(real part)+abs(imag. part)=1.   
            Not referenced if JOBVR = 'N'.   

    LDVR    (input) INTEGER   
            The leading dimension of the matrix VR. LDVR >= 1, and   
            if JOBVR = 'V', LDVR >= N.   

    WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The dimension of the array WORK.  LWORK >= max(1,8*N).   
            For good performance, LWORK must generally be larger.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value.   
            = 1,...,N:   
                  The QZ iteration failed.  No eigenvectors have been   
                  calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)   
                  should be correct for j=INFO+1,...,N.   
            > N:  =N+1: other than QZ iteration failed in DHGEQZ.   
                  =N+2: error return from DTGEVC.   

    =====================================================================   


       Decode the input arguments   

       Parameter adjustments */
    /* Table of constant values */
     integer c__1 = 1;
     integer c__0 = 0;
     Treal c_b26 = 0.;
     Treal c_b27 = 1.;
    
    /* System generated locals */
    integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1, 
	    vr_offset, i__1, i__2;
    Treal d__1, d__2, d__3, d__4;
    /* Local variables */
     Treal anrm, bnrm;
     integer ierr, itau;
     Treal temp;
     logical ilvl, ilvr;
     integer iwrk;
     integer ileft, icols, irows;
     integer jc;
     integer in;
     integer jr;
     logical ilascl, ilbscl;
     logical ldumma[1];
     char chtemp[1];
     Treal bignum;
     integer ijobvl, iright, ijobvr;
     Treal anrmto, bnrmto;
     integer minwrk, maxwrk;
     Treal smlnum;
     logical lquery;
     integer ihi, ilo;
     Treal eps;
     logical ilv;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]
#define vl_ref(a_1,a_2) vl[(a_2)*vl_dim1 + a_1]
#define vr_ref(a_1,a_2) vr[(a_2)*vr_dim1 + a_1]


    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1 * 1;
    b -= b_offset;
    --alphar;
    --alphai;
    --beta;
    vl_dim1 = *ldvl;
    vl_offset = 1 + vl_dim1 * 1;
    vl -= vl_offset;
    vr_dim1 = *ldvr;
    vr_offset = 1 + vr_dim1 * 1;
    vr -= vr_offset;
    --work;

    /* Initialization added by Elias to get rid of compiler warnings. */
    maxwrk = 0;
    /* Function Body */
    if (template_blas_lsame(jobvl, "N")) {
	ijobvl = 1;
	ilvl = FALSE_;
    } else if (template_blas_lsame(jobvl, "V")) {
	ijobvl = 2;
	ilvl = TRUE_;
    } else {
	ijobvl = -1;
	ilvl = FALSE_;
    }

    if (template_blas_lsame(jobvr, "N")) {
	ijobvr = 1;
	ilvr = FALSE_;
    } else if (template_blas_lsame(jobvr, "V")) {
	ijobvr = 2;
	ilvr = TRUE_;
    } else {
	ijobvr = -1;
	ilvr = FALSE_;
    }
    ilv = ilvl || ilvr;

/*     Test the input arguments */

    *info = 0;
    lquery = *lwork == -1;
    if (ijobvl <= 0) {
	*info = -1;
    } else if (ijobvr <= 0) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*lda < maxMACRO(1,*n)) {
	*info = -5;
    } else if (*ldb < maxMACRO(1,*n)) {
	*info = -7;
    } else if (*ldvl < 1 || ( ilvl && *ldvl < *n ) ) {
	*info = -12;
    } else if (*ldvr < 1 || ( ilvr && *ldvr < *n ) ) {
	*info = -14;
    }

/*     Compute workspace   
        (Note: Comments in the code beginning "Workspace:" describe the   
         minimal amount of workspace needed at that point in the code,   
         as well as the preferred amount for good performance.   
         NB refers to the optimal block size for the immediately   
         following subroutine, as returned by ILAENV. The workspace is   
         computed assuming ILO = 1 and IHI = N, the worst case.) */

    minwrk = 1;
    if (*info == 0 && (*lwork >= 1 || lquery)) {
      maxwrk = *n * 7 + *n * template_lapack_ilaenv(&c__1, "DGEQRF", " ", n, &c__1, n, &
						    c__0, (ftnlen)6, (ftnlen)1);
      /* Computing MAX */
      i__1 = 1, i__2 = *n << 3;
      minwrk = maxMACRO(i__1,i__2);
      work[1] = (Treal) maxwrk;
    }

    if (*lwork < minwrk && ! lquery) {
	*info = -16;
    }

    if (*info != 0) {
	i__1 = -(*info);
	template_blas_erbla("GGEV  ", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

/*     Get machine constants */

    eps = template_lapack_lamch("P", (Treal)0);
    smlnum = template_lapack_lamch("S", (Treal)0);
    bignum = 1. / smlnum;
    template_lapack_labad(&smlnum, &bignum);
    smlnum = template_blas_sqrt(smlnum) / eps;
    bignum = 1. / smlnum;

/*     Scale A if max element outside range [SMLNUM,BIGNUM] */

    anrm = template_lapack_lange("M", n, n, &a[a_offset], lda, &work[1]);
    ilascl = FALSE_;
    if (anrm > 0. && anrm < smlnum) {
	anrmto = smlnum;
	ilascl = TRUE_;
    } else if (anrm > bignum) {
	anrmto = bignum;
	ilascl = TRUE_;
    }
    if (ilascl) {
	template_lapack_lascl("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
		ierr);
    }

/*     Scale B if max element outside range [SMLNUM,BIGNUM] */

    bnrm = template_lapack_lange("M", n, n, &b[b_offset], ldb, &work[1]);
    ilbscl = FALSE_;
    if (bnrm > 0. && bnrm < smlnum) {
	bnrmto = smlnum;
	ilbscl = TRUE_;
    } else if (bnrm > bignum) {
	bnrmto = bignum;
	ilbscl = TRUE_;
    }
    if (ilbscl) {
	template_lapack_lascl("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
		ierr);
    }

/*     Permute the matrices A, B to isolate eigenvalues if possible   
       (Workspace: need 6*N) */

    ileft = 1;
    iright = *n + 1;
    iwrk = iright + *n;
    template_lapack_ggbal("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
			    ileft], &work[iright], &work[iwrk], &ierr);

/*     Reduce B to triangular form (QR decomposition of B)   
       (Workspace: need N, prefer N*NB) */

    irows = ihi + 1 - ilo;
    if (ilv) {
	icols = *n + 1 - ilo;
    } else {
	icols = irows;
    }
    itau = iwrk;
    iwrk = itau + irows;
    i__1 = *lwork + 1 - iwrk;
    template_lapack_geqrf(&irows, &icols, &b_ref(ilo, ilo), ldb, &work[itau], &work[iwrk], &
	    i__1, &ierr);

/*     Apply the orthogonal transformation to matrix A   
       (Workspace: need N, prefer N*NB) */

    i__1 = *lwork + 1 - iwrk;
    /* Local char arrays added by Elias to get rid of compiler warnings. */
    char str_L[] = {'L', 0};
    char str_T[] = {'T', 0};
    template_lapack_ormqr(str_L, str_T, &irows, &icols, &irows, &b_ref(ilo, ilo), ldb, &work[
	    itau], &a_ref(ilo, ilo), lda, &work[iwrk], &i__1, &ierr);

/*     Initialize VL   
       (Workspace: need N, prefer N*NB) */

    if (ilvl) {
	template_lapack_laset("Full", n, n, &c_b26, &c_b27, &vl[vl_offset], ldvl)
		;
	i__1 = irows - 1;
	i__2 = irows - 1;
	template_lapack_lacpy("L", &i__1, &i__2, &b_ref(ilo + 1, ilo), ldb, &vl_ref(ilo + 1,
		 ilo), ldvl);
	i__1 = *lwork + 1 - iwrk;
	template_lapack_orgqr(&irows, &irows, &irows, &vl_ref(ilo, ilo), ldvl, &work[itau], 
		&work[iwrk], &i__1, &ierr);
    }

/*     Initialize VR */

    if (ilvr) {
	template_lapack_laset("Full", n, n, &c_b26, &c_b27, &vr[vr_offset], ldvr)
		;
    }

/*     Reduce to generalized Hessenberg form   
       (Workspace: none needed) */

    if (ilv) {

/*        Eigenvectors requested -- work on whole matrix. */

	template_lapack_gghrd(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], 
		ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &ierr);
    } else {
	template_lapack_gghrd("N", "N", &irows, &c__1, &irows, &a_ref(ilo, ilo), lda, &
		b_ref(ilo, ilo), ldb, &vl[vl_offset], ldvl, &vr[vr_offset], 
		ldvr, &ierr);
    }

/*     Perform QZ algorithm (Compute eigenvalues, and optionally, the   
       Schur forms and Schur vectors)   
       (Workspace: need N) */

    iwrk = itau;
    if (ilv) {
	*(unsigned char *)chtemp = 'S';
    } else {
	*(unsigned char *)chtemp = 'E';
    }
    i__1 = *lwork + 1 - iwrk;
    template_lapack_hgeqz(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[
	    b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset], 
	    ldvl, &vr[vr_offset], ldvr, &work[iwrk], &i__1, &ierr);
    if (ierr != 0) {
	if (ierr > 0 && ierr <= *n) {
	    *info = ierr;
	} else if (ierr > *n && ierr <= *n << 1) {
	    *info = ierr - *n;
	} else {
	    *info = *n + 1;
	}
	goto L110;
    }

/*     Compute Eigenvectors   
       (Workspace: need 6*N) */

    if (ilv) {
	if (ilvl) {
	    if (ilvr) {
		*(unsigned char *)chtemp = 'B';
	    } else {
		*(unsigned char *)chtemp = 'L';
	    }
	} else {
	    *(unsigned char *)chtemp = 'R';
	}
	template_lapack_tgevc(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb, 
		&vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[
		iwrk], &ierr);
	if (ierr != 0) {
	    *info = *n + 2;
	    goto L110;
	}

/*        Undo balancing on VL and VR and normalization   
          (Workspace: none needed) */

	if (ilvl) {
	    template_lapack_ggbak("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
		    vl[vl_offset], ldvl, &ierr);
	    i__1 = *n;
	    for (jc = 1; jc <= i__1; ++jc) {
		if (alphai[jc] < 0.) {
		    goto L50;
		}
		temp = 0.;
		if (alphai[jc] == 0.) {
		    i__2 = *n;
		    for (jr = 1; jr <= i__2; ++jr) {
/* Computing MAX */
			d__2 = temp, d__3 = (d__1 = vl_ref(jr, jc), absMACRO(d__1))
				;
			temp = maxMACRO(d__2,d__3);
/* L10: */
		    }
		} else {
		    i__2 = *n;
		    for (jr = 1; jr <= i__2; ++jr) {
/* Computing MAX */
			d__3 = temp, d__4 = (d__1 = vl_ref(jr, jc), absMACRO(d__1))
				 + (d__2 = vl_ref(jr, jc + 1), absMACRO(d__2));
			temp = maxMACRO(d__3,d__4);
/* L20: */
		    }
		}
		if (temp < smlnum) {
		    goto L50;
		}
		temp = 1. / temp;
		if (alphai[jc] == 0.) {
		    i__2 = *n;
		    for (jr = 1; jr <= i__2; ++jr) {
			vl_ref(jr, jc) = vl_ref(jr, jc) * temp;
/* L30: */
		    }
		} else {
		    i__2 = *n;
		    for (jr = 1; jr <= i__2; ++jr) {
			vl_ref(jr, jc) = vl_ref(jr, jc) * temp;
			vl_ref(jr, jc + 1) = vl_ref(jr, jc + 1) * temp;
/* L40: */
		    }
		}
L50:
		;
	    }
	}
	if (ilvr) {
	    template_lapack_ggbak("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
		    vr[vr_offset], ldvr, &ierr);
	    i__1 = *n;
	    for (jc = 1; jc <= i__1; ++jc) {
		if (alphai[jc] < 0.) {
		    goto L100;
		}
		temp = 0.;
		if (alphai[jc] == 0.) {
		    i__2 = *n;
		    for (jr = 1; jr <= i__2; ++jr) {
/* Computing MAX */
			d__2 = temp, d__3 = (d__1 = vr_ref(jr, jc), absMACRO(d__1))
				;
			temp = maxMACRO(d__2,d__3);
/* L60: */
		    }
		} else {
		    i__2 = *n;
		    for (jr = 1; jr <= i__2; ++jr) {
/* Computing MAX */
			d__3 = temp, d__4 = (d__1 = vr_ref(jr, jc), absMACRO(d__1))
				 + (d__2 = vr_ref(jr, jc + 1), absMACRO(d__2));
			temp = maxMACRO(d__3,d__4);
/* L70: */
		    }
		}
		if (temp < smlnum) {
		    goto L100;
		}
		temp = 1. / temp;
		if (alphai[jc] == 0.) {
		    i__2 = *n;
		    for (jr = 1; jr <= i__2; ++jr) {
			vr_ref(jr, jc) = vr_ref(jr, jc) * temp;
/* L80: */
		    }
		} else {
		    i__2 = *n;
		    for (jr = 1; jr <= i__2; ++jr) {
			vr_ref(jr, jc) = vr_ref(jr, jc) * temp;
			vr_ref(jr, jc + 1) = vr_ref(jr, jc + 1) * temp;
/* L90: */
		    }
		}
L100:
		;
	    }
	}

/*        End of eigenvector calculation */

    }

/*     Undo scaling if necessary */

    if (ilascl) {
	template_lapack_lascl("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
		ierr);
	template_lapack_lascl("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
		ierr);
    }

    if (ilbscl) {
	template_lapack_lascl("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
		ierr);
    }

L110:

    work[1] = (Treal) maxwrk;

    return 0;

/*     End of DGGEV */

} /* dggev_ */

#undef vr_ref
#undef vl_ref
#undef b_ref
#undef a_ref


#endif