1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/* This file belongs to the template_lapack part of the Ergo source
* code. The source files in the template_lapack directory are modified
* versions of files originally distributed as CLAPACK, see the
* Copyright/license notice in the file template_lapack/COPYING.
*/
#ifndef TEMPLATE_LAPACK_GGEV_HEADER
#define TEMPLATE_LAPACK_GGEV_HEADER
template<class Treal>
int template_lapack_ggev(const char *jobvl, const char *jobvr, const integer *n, Treal *
a, const integer *lda, Treal *b, const integer *ldb, Treal *alphar,
Treal *alphai, Treal *beta, Treal *vl, const integer *ldvl,
Treal *vr, const integer *ldvr, Treal *work, const integer *lwork,
integer *info)
{
/* -- LAPACK driver routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
June 30, 1999
Purpose
=======
DGGEV computes for a pair of N-by-N real nonsymmetric matrices (A,B)
the generalized eigenvalues, and optionally, the left and/or right
generalized eigenvectors.
A generalized eigenvalue for a pair of matrices (A,B) is a scalar
lambda or a ratio alpha/beta = lambda, such that A - lambda*B is
singular. It is usually represented as the pair (alpha,beta), as
there is a reasonable interpretation for beta=0, and even for both
being zero.
The right eigenvector v(j) corresponding to the eigenvalue lambda(j)
of (A,B) satisfies
A * v(j) = lambda(j) * B * v(j).
The left eigenvector u(j) corresponding to the eigenvalue lambda(j)
of (A,B) satisfies
u(j)**H * A = lambda(j) * u(j)**H * B .
where u(j)**H is the conjugate-transpose of u(j).
Arguments
=========
JOBVL (input) CHARACTER*1
= 'N': do not compute the left generalized eigenvectors;
= 'V': compute the left generalized eigenvectors.
JOBVR (input) CHARACTER*1
= 'N': do not compute the right generalized eigenvectors;
= 'V': compute the right generalized eigenvectors.
N (input) INTEGER
The order of the matrices A, B, VL, and VR. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the matrix A in the pair (A,B).
On exit, A has been overwritten.
LDA (input) INTEGER
The leading dimension of A. LDA >= max(1,N).
B (input/output) DOUBLE PRECISION array, dimension (LDB, N)
On entry, the matrix B in the pair (A,B).
On exit, B has been overwritten.
LDB (input) INTEGER
The leading dimension of B. LDB >= max(1,N).
ALPHAR (output) DOUBLE PRECISION array, dimension (N)
ALPHAI (output) DOUBLE PRECISION array, dimension (N)
BETA (output) DOUBLE PRECISION array, dimension (N)
On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will
be the generalized eigenvalues. If ALPHAI(j) is zero, then
the j-th eigenvalue is real; if positive, then the j-th and
(j+1)-st eigenvalues are a complex conjugate pair, with
ALPHAI(j+1) negative.
Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j)
may easily over- or underflow, and BETA(j) may even be zero.
Thus, the user should avoid naively computing the ratio
alpha/beta. However, ALPHAR and ALPHAI will be always less
than and usually comparable with norm(A) in magnitude, and
BETA always less than and usually comparable with norm(B).
VL (output) DOUBLE PRECISION array, dimension (LDVL,N)
If JOBVL = 'V', the left eigenvectors u(j) are stored one
after another in the columns of VL, in the same order as
their eigenvalues. If the j-th eigenvalue is real, then
u(j) = VL(:,j), the j-th column of VL. If the j-th and
(j+1)-th eigenvalues form a complex conjugate pair, then
u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1).
Each eigenvector will be scaled so the largest component have
abs(real part)+abs(imag. part)=1.
Not referenced if JOBVL = 'N'.
LDVL (input) INTEGER
The leading dimension of the matrix VL. LDVL >= 1, and
if JOBVL = 'V', LDVL >= N.
VR (output) DOUBLE PRECISION array, dimension (LDVR,N)
If JOBVR = 'V', the right eigenvectors v(j) are stored one
after another in the columns of VR, in the same order as
their eigenvalues. If the j-th eigenvalue is real, then
v(j) = VR(:,j), the j-th column of VR. If the j-th and
(j+1)-th eigenvalues form a complex conjugate pair, then
v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1).
Each eigenvector will be scaled so the largest component have
abs(real part)+abs(imag. part)=1.
Not referenced if JOBVR = 'N'.
LDVR (input) INTEGER
The leading dimension of the matrix VR. LDVR >= 1, and
if JOBVR = 'V', LDVR >= N.
WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The dimension of the array WORK. LWORK >= max(1,8*N).
For good performance, LWORK must generally be larger.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value.
= 1,...,N:
The QZ iteration failed. No eigenvectors have been
calculated, but ALPHAR(j), ALPHAI(j), and BETA(j)
should be correct for j=INFO+1,...,N.
> N: =N+1: other than QZ iteration failed in DHGEQZ.
=N+2: error return from DTGEVC.
=====================================================================
Decode the input arguments
Parameter adjustments */
/* Table of constant values */
integer c__1 = 1;
integer c__0 = 0;
Treal c_b26 = 0.;
Treal c_b27 = 1.;
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1,
vr_offset, i__1, i__2;
Treal d__1, d__2, d__3, d__4;
/* Local variables */
Treal anrm, bnrm;
integer ierr, itau;
Treal temp;
logical ilvl, ilvr;
integer iwrk;
integer ileft, icols, irows;
integer jc;
integer in;
integer jr;
logical ilascl, ilbscl;
logical ldumma[1];
char chtemp[1];
Treal bignum;
integer ijobvl, iright, ijobvr;
Treal anrmto, bnrmto;
integer minwrk, maxwrk;
Treal smlnum;
logical lquery;
integer ihi, ilo;
Treal eps;
logical ilv;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define b_ref(a_1,a_2) b[(a_2)*b_dim1 + a_1]
#define vl_ref(a_1,a_2) vl[(a_2)*vl_dim1 + a_1]
#define vr_ref(a_1,a_2) vr[(a_2)*vr_dim1 + a_1]
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1 * 1;
b -= b_offset;
--alphar;
--alphai;
--beta;
vl_dim1 = *ldvl;
vl_offset = 1 + vl_dim1 * 1;
vl -= vl_offset;
vr_dim1 = *ldvr;
vr_offset = 1 + vr_dim1 * 1;
vr -= vr_offset;
--work;
/* Initialization added by Elias to get rid of compiler warnings. */
maxwrk = 0;
/* Function Body */
if (template_blas_lsame(jobvl, "N")) {
ijobvl = 1;
ilvl = FALSE_;
} else if (template_blas_lsame(jobvl, "V")) {
ijobvl = 2;
ilvl = TRUE_;
} else {
ijobvl = -1;
ilvl = FALSE_;
}
if (template_blas_lsame(jobvr, "N")) {
ijobvr = 1;
ilvr = FALSE_;
} else if (template_blas_lsame(jobvr, "V")) {
ijobvr = 2;
ilvr = TRUE_;
} else {
ijobvr = -1;
ilvr = FALSE_;
}
ilv = ilvl || ilvr;
/* Test the input arguments */
*info = 0;
lquery = *lwork == -1;
if (ijobvl <= 0) {
*info = -1;
} else if (ijobvr <= 0) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (*lda < maxMACRO(1,*n)) {
*info = -5;
} else if (*ldb < maxMACRO(1,*n)) {
*info = -7;
} else if (*ldvl < 1 || ( ilvl && *ldvl < *n ) ) {
*info = -12;
} else if (*ldvr < 1 || ( ilvr && *ldvr < *n ) ) {
*info = -14;
}
/* Compute workspace
(Note: Comments in the code beginning "Workspace:" describe the
minimal amount of workspace needed at that point in the code,
as well as the preferred amount for good performance.
NB refers to the optimal block size for the immediately
following subroutine, as returned by ILAENV. The workspace is
computed assuming ILO = 1 and IHI = N, the worst case.) */
minwrk = 1;
if (*info == 0 && (*lwork >= 1 || lquery)) {
maxwrk = *n * 7 + *n * template_lapack_ilaenv(&c__1, "DGEQRF", " ", n, &c__1, n, &
c__0, (ftnlen)6, (ftnlen)1);
/* Computing MAX */
i__1 = 1, i__2 = *n << 3;
minwrk = maxMACRO(i__1,i__2);
work[1] = (Treal) maxwrk;
}
if (*lwork < minwrk && ! lquery) {
*info = -16;
}
if (*info != 0) {
i__1 = -(*info);
template_blas_erbla("GGEV ", &i__1);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
/* Get machine constants */
eps = template_lapack_lamch("P", (Treal)0);
smlnum = template_lapack_lamch("S", (Treal)0);
bignum = 1. / smlnum;
template_lapack_labad(&smlnum, &bignum);
smlnum = template_blas_sqrt(smlnum) / eps;
bignum = 1. / smlnum;
/* Scale A if max element outside range [SMLNUM,BIGNUM] */
anrm = template_lapack_lange("M", n, n, &a[a_offset], lda, &work[1]);
ilascl = FALSE_;
if (anrm > 0. && anrm < smlnum) {
anrmto = smlnum;
ilascl = TRUE_;
} else if (anrm > bignum) {
anrmto = bignum;
ilascl = TRUE_;
}
if (ilascl) {
template_lapack_lascl("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
ierr);
}
/* Scale B if max element outside range [SMLNUM,BIGNUM] */
bnrm = template_lapack_lange("M", n, n, &b[b_offset], ldb, &work[1]);
ilbscl = FALSE_;
if (bnrm > 0. && bnrm < smlnum) {
bnrmto = smlnum;
ilbscl = TRUE_;
} else if (bnrm > bignum) {
bnrmto = bignum;
ilbscl = TRUE_;
}
if (ilbscl) {
template_lapack_lascl("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
ierr);
}
/* Permute the matrices A, B to isolate eigenvalues if possible
(Workspace: need 6*N) */
ileft = 1;
iright = *n + 1;
iwrk = iright + *n;
template_lapack_ggbal("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
ileft], &work[iright], &work[iwrk], &ierr);
/* Reduce B to triangular form (QR decomposition of B)
(Workspace: need N, prefer N*NB) */
irows = ihi + 1 - ilo;
if (ilv) {
icols = *n + 1 - ilo;
} else {
icols = irows;
}
itau = iwrk;
iwrk = itau + irows;
i__1 = *lwork + 1 - iwrk;
template_lapack_geqrf(&irows, &icols, &b_ref(ilo, ilo), ldb, &work[itau], &work[iwrk], &
i__1, &ierr);
/* Apply the orthogonal transformation to matrix A
(Workspace: need N, prefer N*NB) */
i__1 = *lwork + 1 - iwrk;
/* Local char arrays added by Elias to get rid of compiler warnings. */
char str_L[] = {'L', 0};
char str_T[] = {'T', 0};
template_lapack_ormqr(str_L, str_T, &irows, &icols, &irows, &b_ref(ilo, ilo), ldb, &work[
itau], &a_ref(ilo, ilo), lda, &work[iwrk], &i__1, &ierr);
/* Initialize VL
(Workspace: need N, prefer N*NB) */
if (ilvl) {
template_lapack_laset("Full", n, n, &c_b26, &c_b27, &vl[vl_offset], ldvl)
;
i__1 = irows - 1;
i__2 = irows - 1;
template_lapack_lacpy("L", &i__1, &i__2, &b_ref(ilo + 1, ilo), ldb, &vl_ref(ilo + 1,
ilo), ldvl);
i__1 = *lwork + 1 - iwrk;
template_lapack_orgqr(&irows, &irows, &irows, &vl_ref(ilo, ilo), ldvl, &work[itau],
&work[iwrk], &i__1, &ierr);
}
/* Initialize VR */
if (ilvr) {
template_lapack_laset("Full", n, n, &c_b26, &c_b27, &vr[vr_offset], ldvr)
;
}
/* Reduce to generalized Hessenberg form
(Workspace: none needed) */
if (ilv) {
/* Eigenvectors requested -- work on whole matrix. */
template_lapack_gghrd(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &ierr);
} else {
template_lapack_gghrd("N", "N", &irows, &c__1, &irows, &a_ref(ilo, ilo), lda, &
b_ref(ilo, ilo), ldb, &vl[vl_offset], ldvl, &vr[vr_offset],
ldvr, &ierr);
}
/* Perform QZ algorithm (Compute eigenvalues, and optionally, the
Schur forms and Schur vectors)
(Workspace: need N) */
iwrk = itau;
if (ilv) {
*(unsigned char *)chtemp = 'S';
} else {
*(unsigned char *)chtemp = 'E';
}
i__1 = *lwork + 1 - iwrk;
template_lapack_hgeqz(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[
b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset],
ldvl, &vr[vr_offset], ldvr, &work[iwrk], &i__1, &ierr);
if (ierr != 0) {
if (ierr > 0 && ierr <= *n) {
*info = ierr;
} else if (ierr > *n && ierr <= *n << 1) {
*info = ierr - *n;
} else {
*info = *n + 1;
}
goto L110;
}
/* Compute Eigenvectors
(Workspace: need 6*N) */
if (ilv) {
if (ilvl) {
if (ilvr) {
*(unsigned char *)chtemp = 'B';
} else {
*(unsigned char *)chtemp = 'L';
}
} else {
*(unsigned char *)chtemp = 'R';
}
template_lapack_tgevc(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb,
&vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[
iwrk], &ierr);
if (ierr != 0) {
*info = *n + 2;
goto L110;
}
/* Undo balancing on VL and VR and normalization
(Workspace: none needed) */
if (ilvl) {
template_lapack_ggbak("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
vl[vl_offset], ldvl, &ierr);
i__1 = *n;
for (jc = 1; jc <= i__1; ++jc) {
if (alphai[jc] < 0.) {
goto L50;
}
temp = 0.;
if (alphai[jc] == 0.) {
i__2 = *n;
for (jr = 1; jr <= i__2; ++jr) {
/* Computing MAX */
d__2 = temp, d__3 = (d__1 = vl_ref(jr, jc), absMACRO(d__1))
;
temp = maxMACRO(d__2,d__3);
/* L10: */
}
} else {
i__2 = *n;
for (jr = 1; jr <= i__2; ++jr) {
/* Computing MAX */
d__3 = temp, d__4 = (d__1 = vl_ref(jr, jc), absMACRO(d__1))
+ (d__2 = vl_ref(jr, jc + 1), absMACRO(d__2));
temp = maxMACRO(d__3,d__4);
/* L20: */
}
}
if (temp < smlnum) {
goto L50;
}
temp = 1. / temp;
if (alphai[jc] == 0.) {
i__2 = *n;
for (jr = 1; jr <= i__2; ++jr) {
vl_ref(jr, jc) = vl_ref(jr, jc) * temp;
/* L30: */
}
} else {
i__2 = *n;
for (jr = 1; jr <= i__2; ++jr) {
vl_ref(jr, jc) = vl_ref(jr, jc) * temp;
vl_ref(jr, jc + 1) = vl_ref(jr, jc + 1) * temp;
/* L40: */
}
}
L50:
;
}
}
if (ilvr) {
template_lapack_ggbak("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
vr[vr_offset], ldvr, &ierr);
i__1 = *n;
for (jc = 1; jc <= i__1; ++jc) {
if (alphai[jc] < 0.) {
goto L100;
}
temp = 0.;
if (alphai[jc] == 0.) {
i__2 = *n;
for (jr = 1; jr <= i__2; ++jr) {
/* Computing MAX */
d__2 = temp, d__3 = (d__1 = vr_ref(jr, jc), absMACRO(d__1))
;
temp = maxMACRO(d__2,d__3);
/* L60: */
}
} else {
i__2 = *n;
for (jr = 1; jr <= i__2; ++jr) {
/* Computing MAX */
d__3 = temp, d__4 = (d__1 = vr_ref(jr, jc), absMACRO(d__1))
+ (d__2 = vr_ref(jr, jc + 1), absMACRO(d__2));
temp = maxMACRO(d__3,d__4);
/* L70: */
}
}
if (temp < smlnum) {
goto L100;
}
temp = 1. / temp;
if (alphai[jc] == 0.) {
i__2 = *n;
for (jr = 1; jr <= i__2; ++jr) {
vr_ref(jr, jc) = vr_ref(jr, jc) * temp;
/* L80: */
}
} else {
i__2 = *n;
for (jr = 1; jr <= i__2; ++jr) {
vr_ref(jr, jc) = vr_ref(jr, jc) * temp;
vr_ref(jr, jc + 1) = vr_ref(jr, jc + 1) * temp;
/* L90: */
}
}
L100:
;
}
}
/* End of eigenvector calculation */
}
/* Undo scaling if necessary */
if (ilascl) {
template_lapack_lascl("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
ierr);
template_lapack_lascl("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
ierr);
}
if (ilbscl) {
template_lapack_lascl("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
ierr);
}
L110:
work[1] = (Treal) maxwrk;
return 0;
/* End of DGGEV */
} /* dggev_ */
#undef vr_ref
#undef vl_ref
#undef b_ref
#undef a_ref
#endif
|