File: template_lapack_laev2.h

package info (click to toggle)
ergo 3.8.2-1.1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 17,568 kB
  • sloc: cpp: 94,763; ansic: 17,785; sh: 10,701; makefile: 1,403; yacc: 127; lex: 116; awk: 23
file content (202 lines) | stat: -rw-r--r-- 5,773 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */
 
 /* This file belongs to the template_lapack part of the Ergo source 
  * code. The source files in the template_lapack directory are modified
  * versions of files originally distributed as CLAPACK, see the
  * Copyright/license notice in the file template_lapack/COPYING.
  */
 

#ifndef TEMPLATE_LAPACK_LAEV2_HEADER
#define TEMPLATE_LAPACK_LAEV2_HEADER


template<class Treal>
int template_lapack_laev2(Treal *a, Treal *b, Treal *c__, 
	Treal *rt1, Treal *rt2, Treal *cs1, Treal *sn1)
{
/*  -- LAPACK auxiliary routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       October 31, 1992   


    Purpose   
    =======   

    DLAEV2 computes the eigendecomposition of a 2-by-2 symmetric matrix   
       [  A   B  ]   
       [  B   C  ].   
    On return, RT1 is the eigenvalue of larger absolute value, RT2 is the   
    eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right   
    eigenvector for RT1, giving the decomposition   

       [ CS1  SN1 ] [  A   B  ] [ CS1 -SN1 ]  =  [ RT1  0  ]   
       [-SN1  CS1 ] [  B   C  ] [ SN1  CS1 ]     [  0  RT2 ].   

    Arguments   
    =========   

    A       (input) DOUBLE PRECISION   
            The (1,1) element of the 2-by-2 matrix.   

    B       (input) DOUBLE PRECISION   
            The (1,2) element and the conjugate of the (2,1) element of   
            the 2-by-2 matrix.   

    C       (input) DOUBLE PRECISION   
            The (2,2) element of the 2-by-2 matrix.   

    RT1     (output) DOUBLE PRECISION   
            The eigenvalue of larger absolute value.   

    RT2     (output) DOUBLE PRECISION   
            The eigenvalue of smaller absolute value.   

    CS1     (output) DOUBLE PRECISION   
    SN1     (output) DOUBLE PRECISION   
            The vector (CS1, SN1) is a unit right eigenvector for RT1.   

    Further Details   
    ===============   

    RT1 is accurate to a few ulps barring over/underflow.   

    RT2 may be inaccurate if there is massive cancellation in the   
    determinant A*C-B*B; higher precision or correctly rounded or   
    correctly truncated arithmetic would be needed to compute RT2   
    accurately in all cases.   

    CS1 and SN1 are accurate to a few ulps barring over/underflow.   

    Overflow is possible only if RT1 is within a factor of 5 of overflow.   
    Underflow is harmless if the input data is 0 or exceeds   
       underflow_threshold / macheps.   

   =====================================================================   


       Compute the eigenvalues */
    /* System generated locals */
    Treal d__1;
    /* Local variables */
     Treal acmn, acmx, ab, df, cs, ct, tb, sm, tn, rt, adf, acs;
     integer sgn1, sgn2;


    sm = *a + *c__;
    df = *a - *c__;
    adf = absMACRO(df);
    tb = *b + *b;
    ab = absMACRO(tb);
    if (absMACRO(*a) > absMACRO(*c__)) {
	acmx = *a;
	acmn = *c__;
    } else {
	acmx = *c__;
	acmn = *a;
    }
    if (adf > ab) {
/* Computing 2nd power */
	d__1 = ab / adf;
	rt = adf * template_blas_sqrt(d__1 * d__1 + 1.);
    } else if (adf < ab) {
/* Computing 2nd power */
	d__1 = adf / ab;
	rt = ab * template_blas_sqrt(d__1 * d__1 + 1.);
    } else {

/*        Includes case AB=ADF=0 */

	rt = ab * template_blas_sqrt(2.);
    }
    if (sm < 0.) {
	*rt1 = (sm - rt) * .5;
	sgn1 = -1;

/*        Order of execution important.   
          To get fully accurate smaller eigenvalue,   
          next line needs to be executed in higher precision. */

	*rt2 = acmx / *rt1 * acmn - *b / *rt1 * *b;
    } else if (sm > 0.) {
	*rt1 = (sm + rt) * .5;
	sgn1 = 1;

/*        Order of execution important.   
          To get fully accurate smaller eigenvalue,   
          next line needs to be executed in higher precision. */

	*rt2 = acmx / *rt1 * acmn - *b / *rt1 * *b;
    } else {

/*        Includes case RT1 = RT2 = 0 */

	*rt1 = rt * .5;
	*rt2 = rt * -.5;
	sgn1 = 1;
    }

/*     Compute the eigenvector */

    if (df >= 0.) {
	cs = df + rt;
	sgn2 = 1;
    } else {
	cs = df - rt;
	sgn2 = -1;
    }
    acs = absMACRO(cs);
    if (acs > ab) {
	ct = -tb / cs;
	*sn1 = 1. / template_blas_sqrt(ct * ct + 1.);
	*cs1 = ct * *sn1;
    } else {
	if (ab == 0.) {
	    *cs1 = 1.;
	    *sn1 = 0.;
	} else {
	    tn = -cs / tb;
	    *cs1 = 1. / template_blas_sqrt(tn * tn + 1.);
	    *sn1 = tn * *cs1;
	}
    }
    if (sgn1 == sgn2) {
	tn = *cs1;
	*cs1 = -(*sn1);
	*sn1 = tn;
    }
    return 0;

/*     End of DLAEV2 */

} /* dlaev2_ */

#endif