File: template_lapack_lagtf.h

package info (click to toggle)
ergo 3.8.2-1.1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 17,568 kB
  • sloc: cpp: 94,763; ansic: 17,785; sh: 10,701; makefile: 1,403; yacc: 127; lex: 116; awk: 23
file content (237 lines) | stat: -rw-r--r-- 7,442 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */
 
 /* This file belongs to the template_lapack part of the Ergo source 
  * code. The source files in the template_lapack directory are modified
  * versions of files originally distributed as CLAPACK, see the
  * Copyright/license notice in the file template_lapack/COPYING.
  */
 

#ifndef TEMPLATE_LAPACK_LAGTF_HEADER
#define TEMPLATE_LAPACK_LAGTF_HEADER


template<class Treal>
int template_lapack_lagtf(const integer *n, Treal *a, const Treal *lambda, 
	Treal *b, Treal *c__, const Treal *tol, Treal *d__, 
	integer *in, integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    DLAGTF factorizes the matrix (T - lambda*I), where T is an n by n   
    tridiagonal matrix and lambda is a scalar, as   

       T - lambda*I = PLU,   

    where P is a permutation matrix, L is a unit lower tridiagonal matrix   
    with at most one non-zero sub-diagonal elements per column and U is   
    an upper triangular matrix with at most two non-zero super-diagonal   
    elements per column.   

    The factorization is obtained by Gaussian elimination with partial   
    pivoting and implicit row scaling.   

    The parameter LAMBDA is included in the routine so that DLAGTF may   
    be used, in conjunction with DLAGTS, to obtain eigenvectors of T by   
    inverse iteration.   

    Arguments   
    =========   

    N       (input) INTEGER   
            The order of the matrix T.   

    A       (input/output) DOUBLE PRECISION array, dimension (N)   
            On entry, A must contain the diagonal elements of T.   

            On exit, A is overwritten by the n diagonal elements of the   
            upper triangular matrix U of the factorization of T.   

    LAMBDA  (input) DOUBLE PRECISION   
            On entry, the scalar lambda.   

    B       (input/output) DOUBLE PRECISION array, dimension (N-1)   
            On entry, B must contain the (n-1) super-diagonal elements of   
            T.   

            On exit, B is overwritten by the (n-1) super-diagonal   
            elements of the matrix U of the factorization of T.   

    C       (input/output) DOUBLE PRECISION array, dimension (N-1)   
            On entry, C must contain the (n-1) sub-diagonal elements of   
            T.   

            On exit, C is overwritten by the (n-1) sub-diagonal elements   
            of the matrix L of the factorization of T.   

    TOL     (input) DOUBLE PRECISION   
            On entry, a relative tolerance used to indicate whether or   
            not the matrix (T - lambda*I) is nearly singular. TOL should   
            normally be chose as approximately the largest relative error   
            in the elements of T. For example, if the elements of T are   
            correct to about 4 significant figures, then TOL should be   
            set to about 5*10**(-4). If TOL is supplied as less than eps,   
            where eps is the relative machine precision, then the value   
            eps is used in place of TOL.   

    D       (output) DOUBLE PRECISION array, dimension (N-2)   
            On exit, D is overwritten by the (n-2) second super-diagonal   
            elements of the matrix U of the factorization of T.   

    IN      (output) INTEGER array, dimension (N)   
            On exit, IN contains details of the permutation matrix P. If   
            an interchange occurred at the kth step of the elimination,   
            then IN(k) = 1, otherwise IN(k) = 0. The element IN(n)   
            returns the smallest positive integer j such that   

               abs( u(j,j) ).le. norm( (T - lambda*I)(j) )*TOL,   

            where norm( A(j) ) denotes the sum of the absolute values of   
            the jth row of the matrix A. If no such j exists then IN(n)   
            is returned as zero. If IN(n) is returned as positive, then a   
            diagonal element of U is small, indicating that   
            (T - lambda*I) is singular or nearly singular,   

    INFO    (output) INTEGER   
            = 0   : successful exit   
            .lt. 0: if INFO = -k, the kth argument had an illegal value   

   =====================================================================   


       Parameter adjustments */
    /* System generated locals */
    integer i__1;
    Treal d__1, d__2;
    /* Local variables */
     Treal temp, mult;
     integer k;
     Treal scale1, scale2;
     Treal tl;
     Treal eps, piv1, piv2;

    --in;
    --d__;
    --c__;
    --b;
    --a;

    /* Function Body */
    *info = 0;
    if (*n < 0) {
	*info = -1;
	i__1 = -(*info);
	template_blas_erbla("LAGTF ", &i__1);
	return 0;
    }

    if (*n == 0) {
	return 0;
    }

    a[1] -= *lambda;
    in[*n] = 0;
    if (*n == 1) {
	if (a[1] == 0.) {
	    in[1] = 1;
	}
	return 0;
    }

    eps = template_lapack_lamch("Epsilon", (Treal)0);

    tl = maxMACRO(*tol,eps);
    scale1 = absMACRO(a[1]) + absMACRO(b[1]);
    i__1 = *n - 1;
    for (k = 1; k <= i__1; ++k) {
	a[k + 1] -= *lambda;
	scale2 = (d__1 = c__[k], absMACRO(d__1)) + (d__2 = a[k + 1], absMACRO(d__2));
	if (k < *n - 1) {
	    scale2 += (d__1 = b[k + 1], absMACRO(d__1));
	}
	if (a[k] == 0.) {
	    piv1 = 0.;
	} else {
	    piv1 = (d__1 = a[k], absMACRO(d__1)) / scale1;
	}
	if (c__[k] == 0.) {
	    in[k] = 0;
	    piv2 = 0.;
	    scale1 = scale2;
	    if (k < *n - 1) {
		d__[k] = 0.;
	    }
	} else {
	    piv2 = (d__1 = c__[k], absMACRO(d__1)) / scale2;
	    if (piv2 <= piv1) {
		in[k] = 0;
		scale1 = scale2;
		c__[k] /= a[k];
		a[k + 1] -= c__[k] * b[k];
		if (k < *n - 1) {
		    d__[k] = 0.;
		}
	    } else {
		in[k] = 1;
		mult = a[k] / c__[k];
		a[k] = c__[k];
		temp = a[k + 1];
		a[k + 1] = b[k] - mult * temp;
		if (k < *n - 1) {
		    d__[k] = b[k + 1];
		    b[k + 1] = -mult * d__[k];
		}
		b[k] = temp;
		c__[k] = mult;
	    }
	}
	if (maxMACRO(piv1,piv2) <= tl && in[*n] == 0) {
	    in[*n] = k;
	}
/* L10: */
    }
    if ((d__1 = a[*n], absMACRO(d__1)) <= scale1 * tl && in[*n] == 0) {
	in[*n] = *n;
    }

    return 0;

/*     End of DLAGTF */

} /* dlagtf_ */

#endif