1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/* This file belongs to the template_lapack part of the Ergo source
* code. The source files in the template_lapack directory are modified
* versions of files originally distributed as CLAPACK, see the
* Copyright/license notice in the file template_lapack/COPYING.
*/
#ifndef TEMPLATE_LAPACK_LAGTF_HEADER
#define TEMPLATE_LAPACK_LAGTF_HEADER
template<class Treal>
int template_lapack_lagtf(const integer *n, Treal *a, const Treal *lambda,
Treal *b, Treal *c__, const Treal *tol, Treal *d__,
integer *in, integer *info)
{
/* -- LAPACK routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
June 30, 1999
Purpose
=======
DLAGTF factorizes the matrix (T - lambda*I), where T is an n by n
tridiagonal matrix and lambda is a scalar, as
T - lambda*I = PLU,
where P is a permutation matrix, L is a unit lower tridiagonal matrix
with at most one non-zero sub-diagonal elements per column and U is
an upper triangular matrix with at most two non-zero super-diagonal
elements per column.
The factorization is obtained by Gaussian elimination with partial
pivoting and implicit row scaling.
The parameter LAMBDA is included in the routine so that DLAGTF may
be used, in conjunction with DLAGTS, to obtain eigenvectors of T by
inverse iteration.
Arguments
=========
N (input) INTEGER
The order of the matrix T.
A (input/output) DOUBLE PRECISION array, dimension (N)
On entry, A must contain the diagonal elements of T.
On exit, A is overwritten by the n diagonal elements of the
upper triangular matrix U of the factorization of T.
LAMBDA (input) DOUBLE PRECISION
On entry, the scalar lambda.
B (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, B must contain the (n-1) super-diagonal elements of
T.
On exit, B is overwritten by the (n-1) super-diagonal
elements of the matrix U of the factorization of T.
C (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, C must contain the (n-1) sub-diagonal elements of
T.
On exit, C is overwritten by the (n-1) sub-diagonal elements
of the matrix L of the factorization of T.
TOL (input) DOUBLE PRECISION
On entry, a relative tolerance used to indicate whether or
not the matrix (T - lambda*I) is nearly singular. TOL should
normally be chose as approximately the largest relative error
in the elements of T. For example, if the elements of T are
correct to about 4 significant figures, then TOL should be
set to about 5*10**(-4). If TOL is supplied as less than eps,
where eps is the relative machine precision, then the value
eps is used in place of TOL.
D (output) DOUBLE PRECISION array, dimension (N-2)
On exit, D is overwritten by the (n-2) second super-diagonal
elements of the matrix U of the factorization of T.
IN (output) INTEGER array, dimension (N)
On exit, IN contains details of the permutation matrix P. If
an interchange occurred at the kth step of the elimination,
then IN(k) = 1, otherwise IN(k) = 0. The element IN(n)
returns the smallest positive integer j such that
abs( u(j,j) ).le. norm( (T - lambda*I)(j) )*TOL,
where norm( A(j) ) denotes the sum of the absolute values of
the jth row of the matrix A. If no such j exists then IN(n)
is returned as zero. If IN(n) is returned as positive, then a
diagonal element of U is small, indicating that
(T - lambda*I) is singular or nearly singular,
INFO (output) INTEGER
= 0 : successful exit
.lt. 0: if INFO = -k, the kth argument had an illegal value
=====================================================================
Parameter adjustments */
/* System generated locals */
integer i__1;
Treal d__1, d__2;
/* Local variables */
Treal temp, mult;
integer k;
Treal scale1, scale2;
Treal tl;
Treal eps, piv1, piv2;
--in;
--d__;
--c__;
--b;
--a;
/* Function Body */
*info = 0;
if (*n < 0) {
*info = -1;
i__1 = -(*info);
template_blas_erbla("LAGTF ", &i__1);
return 0;
}
if (*n == 0) {
return 0;
}
a[1] -= *lambda;
in[*n] = 0;
if (*n == 1) {
if (a[1] == 0.) {
in[1] = 1;
}
return 0;
}
eps = template_lapack_lamch("Epsilon", (Treal)0);
tl = maxMACRO(*tol,eps);
scale1 = absMACRO(a[1]) + absMACRO(b[1]);
i__1 = *n - 1;
for (k = 1; k <= i__1; ++k) {
a[k + 1] -= *lambda;
scale2 = (d__1 = c__[k], absMACRO(d__1)) + (d__2 = a[k + 1], absMACRO(d__2));
if (k < *n - 1) {
scale2 += (d__1 = b[k + 1], absMACRO(d__1));
}
if (a[k] == 0.) {
piv1 = 0.;
} else {
piv1 = (d__1 = a[k], absMACRO(d__1)) / scale1;
}
if (c__[k] == 0.) {
in[k] = 0;
piv2 = 0.;
scale1 = scale2;
if (k < *n - 1) {
d__[k] = 0.;
}
} else {
piv2 = (d__1 = c__[k], absMACRO(d__1)) / scale2;
if (piv2 <= piv1) {
in[k] = 0;
scale1 = scale2;
c__[k] /= a[k];
a[k + 1] -= c__[k] * b[k];
if (k < *n - 1) {
d__[k] = 0.;
}
} else {
in[k] = 1;
mult = a[k] / c__[k];
a[k] = c__[k];
temp = a[k + 1];
a[k + 1] = b[k] - mult * temp;
if (k < *n - 1) {
d__[k] = b[k + 1];
b[k + 1] = -mult * d__[k];
}
b[k] = temp;
c__[k] = mult;
}
}
if (maxMACRO(piv1,piv2) <= tl && in[*n] == 0) {
in[*n] = k;
}
/* L10: */
}
if ((d__1 = a[*n], absMACRO(d__1)) <= scale1 * tl && in[*n] == 0) {
in[*n] = *n;
}
return 0;
/* End of DLAGTF */
} /* dlagtf_ */
#endif
|