File: template_lapack_lagts.h

package info (click to toggle)
ergo 3.8.2-1.1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 17,568 kB
  • sloc: cpp: 94,763; ansic: 17,785; sh: 10,701; makefile: 1,403; yacc: 127; lex: 116; awk: 23
file content (359 lines) | stat: -rw-r--r-- 10,403 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */
 
 /* This file belongs to the template_lapack part of the Ergo source 
  * code. The source files in the template_lapack directory are modified
  * versions of files originally distributed as CLAPACK, see the
  * Copyright/license notice in the file template_lapack/COPYING.
  */
 

#ifndef TEMPLATE_LAPACK_LAGTS_HEADER
#define TEMPLATE_LAPACK_LAGTS_HEADER


template<class Treal>
int template_lapack_lagts(const integer *job, const integer *n, const Treal *a, 
	const Treal *b, const Treal *c__, const Treal *d__, const integer *in, 
	Treal *y, Treal *tol, integer *info)
{
/*  -- LAPACK auxiliary routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       October 31, 1992   


    Purpose   
    =======   

    DLAGTS may be used to solve one of the systems of equations   

       (T - lambda*I)*x = y   or   (T - lambda*I)'*x = y,   

    where T is an n by n tridiagonal matrix, for x, following the   
    factorization of (T - lambda*I) as   

       (T - lambda*I) = P*L*U ,   

    by routine DLAGTF. The choice of equation to be solved is   
    controlled by the argument JOB, and in each case there is an option   
    to perturb zero or very small diagonal elements of U, this option   
    being intended for use in applications such as inverse iteration.   

    Arguments   
    =========   

    JOB     (input) INTEGER   
            Specifies the job to be performed by DLAGTS as follows:   
            =  1: The equations  (T - lambda*I)x = y  are to be solved,   
                  but diagonal elements of U are not to be perturbed.   
            = -1: The equations  (T - lambda*I)x = y  are to be solved   
                  and, if overflow would otherwise occur, the diagonal   
                  elements of U are to be perturbed. See argument TOL   
                  below.   
            =  2: The equations  (T - lambda*I)'x = y  are to be solved,   
                  but diagonal elements of U are not to be perturbed.   
            = -2: The equations  (T - lambda*I)'x = y  are to be solved   
                  and, if overflow would otherwise occur, the diagonal   
                  elements of U are to be perturbed. See argument TOL   
                  below.   

    N       (input) INTEGER   
            The order of the matrix T.   

    A       (input) DOUBLE PRECISION array, dimension (N)   
            On entry, A must contain the diagonal elements of U as   
            returned from DLAGTF.   

    B       (input) DOUBLE PRECISION array, dimension (N-1)   
            On entry, B must contain the first super-diagonal elements of   
            U as returned from DLAGTF.   

    C       (input) DOUBLE PRECISION array, dimension (N-1)   
            On entry, C must contain the sub-diagonal elements of L as   
            returned from DLAGTF.   

    D       (input) DOUBLE PRECISION array, dimension (N-2)   
            On entry, D must contain the second super-diagonal elements   
            of U as returned from DLAGTF.   

    IN      (input) INTEGER array, dimension (N)   
            On entry, IN must contain details of the matrix P as returned   
            from DLAGTF.   

    Y       (input/output) DOUBLE PRECISION array, dimension (N)   
            On entry, the right hand side vector y.   
            On exit, Y is overwritten by the solution vector x.   

    TOL     (input/output) DOUBLE PRECISION   
            On entry, with  JOB .lt. 0, TOL should be the minimum   
            perturbation to be made to very small diagonal elements of U.   
            TOL should normally be chosen as about eps*norm(U), where eps   
            is the relative machine precision, but if TOL is supplied as   
            non-positive, then it is reset to eps*max( abs( u(i,j) ) ).   
            If  JOB .gt. 0  then TOL is not referenced.   

            On exit, TOL is changed as described above, only if TOL is   
            non-positive on entry. Otherwise TOL is unchanged.   

    INFO    (output) INTEGER   
            = 0   : successful exit   
            .lt. 0: if INFO = -i, the i-th argument had an illegal value   
            .gt. 0: overflow would occur when computing the INFO(th)   
                    element of the solution vector x. This can only occur   
                    when JOB is supplied as positive and either means   
                    that a diagonal element of U is very small, or that   
                    the elements of the right-hand side vector y are very   
                    large.   

    =====================================================================   


       Parameter adjustments */
    /* System generated locals */
    integer i__1;
    Treal d__1, d__2, d__3, d__4, d__5;
    /* Local variables */
     Treal temp, pert;
     integer k;
     Treal absak, sfmin, ak;
     Treal bignum, eps;

    --y;
    --in;
    --d__;
    --c__;
    --b;
    --a;

    /* Function Body */
    *info = 0;
    if (absMACRO(*job) > 2 || *job == 0) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    }
    if (*info != 0) {
	i__1 = -(*info);
	template_blas_erbla("LAGTS ", &i__1);
	return 0;
    }

    if (*n == 0) {
	return 0;
    }

    eps = template_lapack_lamch("Epsilon", (Treal)0);
    sfmin = template_lapack_lamch("Safe minimum", (Treal)0);
    bignum = 1. / sfmin;

    if (*job < 0) {
	if (*tol <= 0.) {
	    *tol = absMACRO(a[1]);
	    if (*n > 1) {
/* Computing MAX */
		d__1 = *tol, d__2 = absMACRO(a[2]), d__1 = maxMACRO(d__1,d__2), d__2 = 
			absMACRO(b[1]);
		*tol = maxMACRO(d__1,d__2);
	    }
	    i__1 = *n;
	    for (k = 3; k <= i__1; ++k) {
/* Computing MAX */
		d__4 = *tol, d__5 = (d__1 = a[k], absMACRO(d__1)), d__4 = maxMACRO(d__4,
			d__5), d__5 = (d__2 = b[k - 1], absMACRO(d__2)), d__4 = 
			maxMACRO(d__4,d__5), d__5 = (d__3 = d__[k - 2], absMACRO(d__3));
		*tol = maxMACRO(d__4,d__5);
/* L10: */
	    }
	    *tol *= eps;
	    if (*tol == 0.) {
		*tol = eps;
	    }
	}
    }

    if (absMACRO(*job) == 1) {
	i__1 = *n;
	for (k = 2; k <= i__1; ++k) {
	    if (in[k - 1] == 0) {
		y[k] -= c__[k - 1] * y[k - 1];
	    } else {
		temp = y[k - 1];
		y[k - 1] = y[k];
		y[k] = temp - c__[k - 1] * y[k];
	    }
/* L20: */
	}
	if (*job == 1) {
	    for (k = *n; k >= 1; --k) {
		if (k <= *n - 2) {
		    temp = y[k] - b[k] * y[k + 1] - d__[k] * y[k + 2];
		} else if (k == *n - 1) {
		    temp = y[k] - b[k] * y[k + 1];
		} else {
		    temp = y[k];
		}
		ak = a[k];
		absak = absMACRO(ak);
		if (absak < 1.) {
		    if (absak < sfmin) {
			if (absak == 0. || absMACRO(temp) * sfmin > absak) {
			    *info = k;
			    return 0;
			} else {
			    temp *= bignum;
			    ak *= bignum;
			}
		    } else if (absMACRO(temp) > absak * bignum) {
			*info = k;
			return 0;
		    }
		}
		y[k] = temp / ak;
/* L30: */
	    }
	} else {
	    for (k = *n; k >= 1; --k) {
		if (k <= *n - 2) {
		    temp = y[k] - b[k] * y[k + 1] - d__[k] * y[k + 2];
		} else if (k == *n - 1) {
		    temp = y[k] - b[k] * y[k + 1];
		} else {
		    temp = y[k];
		}
		ak = a[k];
		pert = template_lapack_d_sign(tol, &ak);
L40:
		absak = absMACRO(ak);
		if (absak < 1.) {
		    if (absak < sfmin) {
			if (absak == 0. || absMACRO(temp) * sfmin > absak) {
			    ak += pert;
			    pert *= 2;
			    goto L40;
			} else {
			    temp *= bignum;
			    ak *= bignum;
			}
		    } else if (absMACRO(temp) > absak * bignum) {
			ak += pert;
			pert *= 2;
			goto L40;
		    }
		}
		y[k] = temp / ak;
/* L50: */
	    }
	}
    } else {

/*        Come to here if  JOB = 2 or -2 */

	if (*job == 2) {
	    i__1 = *n;
	    for (k = 1; k <= i__1; ++k) {
		if (k >= 3) {
		    temp = y[k] - b[k - 1] * y[k - 1] - d__[k - 2] * y[k - 2];
		} else if (k == 2) {
		    temp = y[k] - b[k - 1] * y[k - 1];
		} else {
		    temp = y[k];
		}
		ak = a[k];
		absak = absMACRO(ak);
		if (absak < 1.) {
		    if (absak < sfmin) {
			if (absak == 0. || absMACRO(temp) * sfmin > absak) {
			    *info = k;
			    return 0;
			} else {
			    temp *= bignum;
			    ak *= bignum;
			}
		    } else if (absMACRO(temp) > absak * bignum) {
			*info = k;
			return 0;
		    }
		}
		y[k] = temp / ak;
/* L60: */
	    }
	} else {
	    i__1 = *n;
	    for (k = 1; k <= i__1; ++k) {
		if (k >= 3) {
		    temp = y[k] - b[k - 1] * y[k - 1] - d__[k - 2] * y[k - 2];
		} else if (k == 2) {
		    temp = y[k] - b[k - 1] * y[k - 1];
		} else {
		    temp = y[k];
		}
		ak = a[k];
		pert = template_lapack_d_sign(tol, &ak);
L70:
		absak = absMACRO(ak);
		if (absak < 1.) {
		    if (absak < sfmin) {
			if (absak == 0. || absMACRO(temp) * sfmin > absak) {
			    ak += pert;
			    pert *= 2;
			    goto L70;
			} else {
			    temp *= bignum;
			    ak *= bignum;
			}
		    } else if (absMACRO(temp) > absak * bignum) {
			ak += pert;
			pert *= 2;
			goto L70;
		    }
		}
		y[k] = temp / ak;
/* L80: */
	    }
	}

	for (k = *n; k >= 2; --k) {
	    if (in[k - 1] == 0) {
		y[k - 1] -= c__[k - 1] * y[k];
	    } else {
		temp = y[k - 1];
		y[k - 1] = y[k];
		y[k] = temp - c__[k - 1] * y[k];
	    }
/* L90: */
	}
    }

/*     End of DLAGTS */

    return 0;
} /* dlagts_ */

#endif