1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/* This file belongs to the template_lapack part of the Ergo source
* code. The source files in the template_lapack directory are modified
* versions of files originally distributed as CLAPACK, see the
* Copyright/license notice in the file template_lapack/COPYING.
*/
#ifndef TEMPLATE_LAPACK_LAGTS_HEADER
#define TEMPLATE_LAPACK_LAGTS_HEADER
template<class Treal>
int template_lapack_lagts(const integer *job, const integer *n, const Treal *a,
const Treal *b, const Treal *c__, const Treal *d__, const integer *in,
Treal *y, Treal *tol, integer *info)
{
/* -- LAPACK auxiliary routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
October 31, 1992
Purpose
=======
DLAGTS may be used to solve one of the systems of equations
(T - lambda*I)*x = y or (T - lambda*I)'*x = y,
where T is an n by n tridiagonal matrix, for x, following the
factorization of (T - lambda*I) as
(T - lambda*I) = P*L*U ,
by routine DLAGTF. The choice of equation to be solved is
controlled by the argument JOB, and in each case there is an option
to perturb zero or very small diagonal elements of U, this option
being intended for use in applications such as inverse iteration.
Arguments
=========
JOB (input) INTEGER
Specifies the job to be performed by DLAGTS as follows:
= 1: The equations (T - lambda*I)x = y are to be solved,
but diagonal elements of U are not to be perturbed.
= -1: The equations (T - lambda*I)x = y are to be solved
and, if overflow would otherwise occur, the diagonal
elements of U are to be perturbed. See argument TOL
below.
= 2: The equations (T - lambda*I)'x = y are to be solved,
but diagonal elements of U are not to be perturbed.
= -2: The equations (T - lambda*I)'x = y are to be solved
and, if overflow would otherwise occur, the diagonal
elements of U are to be perturbed. See argument TOL
below.
N (input) INTEGER
The order of the matrix T.
A (input) DOUBLE PRECISION array, dimension (N)
On entry, A must contain the diagonal elements of U as
returned from DLAGTF.
B (input) DOUBLE PRECISION array, dimension (N-1)
On entry, B must contain the first super-diagonal elements of
U as returned from DLAGTF.
C (input) DOUBLE PRECISION array, dimension (N-1)
On entry, C must contain the sub-diagonal elements of L as
returned from DLAGTF.
D (input) DOUBLE PRECISION array, dimension (N-2)
On entry, D must contain the second super-diagonal elements
of U as returned from DLAGTF.
IN (input) INTEGER array, dimension (N)
On entry, IN must contain details of the matrix P as returned
from DLAGTF.
Y (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the right hand side vector y.
On exit, Y is overwritten by the solution vector x.
TOL (input/output) DOUBLE PRECISION
On entry, with JOB .lt. 0, TOL should be the minimum
perturbation to be made to very small diagonal elements of U.
TOL should normally be chosen as about eps*norm(U), where eps
is the relative machine precision, but if TOL is supplied as
non-positive, then it is reset to eps*max( abs( u(i,j) ) ).
If JOB .gt. 0 then TOL is not referenced.
On exit, TOL is changed as described above, only if TOL is
non-positive on entry. Otherwise TOL is unchanged.
INFO (output) INTEGER
= 0 : successful exit
.lt. 0: if INFO = -i, the i-th argument had an illegal value
.gt. 0: overflow would occur when computing the INFO(th)
element of the solution vector x. This can only occur
when JOB is supplied as positive and either means
that a diagonal element of U is very small, or that
the elements of the right-hand side vector y are very
large.
=====================================================================
Parameter adjustments */
/* System generated locals */
integer i__1;
Treal d__1, d__2, d__3, d__4, d__5;
/* Local variables */
Treal temp, pert;
integer k;
Treal absak, sfmin, ak;
Treal bignum, eps;
--y;
--in;
--d__;
--c__;
--b;
--a;
/* Function Body */
*info = 0;
if (absMACRO(*job) > 2 || *job == 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
}
if (*info != 0) {
i__1 = -(*info);
template_blas_erbla("LAGTS ", &i__1);
return 0;
}
if (*n == 0) {
return 0;
}
eps = template_lapack_lamch("Epsilon", (Treal)0);
sfmin = template_lapack_lamch("Safe minimum", (Treal)0);
bignum = 1. / sfmin;
if (*job < 0) {
if (*tol <= 0.) {
*tol = absMACRO(a[1]);
if (*n > 1) {
/* Computing MAX */
d__1 = *tol, d__2 = absMACRO(a[2]), d__1 = maxMACRO(d__1,d__2), d__2 =
absMACRO(b[1]);
*tol = maxMACRO(d__1,d__2);
}
i__1 = *n;
for (k = 3; k <= i__1; ++k) {
/* Computing MAX */
d__4 = *tol, d__5 = (d__1 = a[k], absMACRO(d__1)), d__4 = maxMACRO(d__4,
d__5), d__5 = (d__2 = b[k - 1], absMACRO(d__2)), d__4 =
maxMACRO(d__4,d__5), d__5 = (d__3 = d__[k - 2], absMACRO(d__3));
*tol = maxMACRO(d__4,d__5);
/* L10: */
}
*tol *= eps;
if (*tol == 0.) {
*tol = eps;
}
}
}
if (absMACRO(*job) == 1) {
i__1 = *n;
for (k = 2; k <= i__1; ++k) {
if (in[k - 1] == 0) {
y[k] -= c__[k - 1] * y[k - 1];
} else {
temp = y[k - 1];
y[k - 1] = y[k];
y[k] = temp - c__[k - 1] * y[k];
}
/* L20: */
}
if (*job == 1) {
for (k = *n; k >= 1; --k) {
if (k <= *n - 2) {
temp = y[k] - b[k] * y[k + 1] - d__[k] * y[k + 2];
} else if (k == *n - 1) {
temp = y[k] - b[k] * y[k + 1];
} else {
temp = y[k];
}
ak = a[k];
absak = absMACRO(ak);
if (absak < 1.) {
if (absak < sfmin) {
if (absak == 0. || absMACRO(temp) * sfmin > absak) {
*info = k;
return 0;
} else {
temp *= bignum;
ak *= bignum;
}
} else if (absMACRO(temp) > absak * bignum) {
*info = k;
return 0;
}
}
y[k] = temp / ak;
/* L30: */
}
} else {
for (k = *n; k >= 1; --k) {
if (k <= *n - 2) {
temp = y[k] - b[k] * y[k + 1] - d__[k] * y[k + 2];
} else if (k == *n - 1) {
temp = y[k] - b[k] * y[k + 1];
} else {
temp = y[k];
}
ak = a[k];
pert = template_lapack_d_sign(tol, &ak);
L40:
absak = absMACRO(ak);
if (absak < 1.) {
if (absak < sfmin) {
if (absak == 0. || absMACRO(temp) * sfmin > absak) {
ak += pert;
pert *= 2;
goto L40;
} else {
temp *= bignum;
ak *= bignum;
}
} else if (absMACRO(temp) > absak * bignum) {
ak += pert;
pert *= 2;
goto L40;
}
}
y[k] = temp / ak;
/* L50: */
}
}
} else {
/* Come to here if JOB = 2 or -2 */
if (*job == 2) {
i__1 = *n;
for (k = 1; k <= i__1; ++k) {
if (k >= 3) {
temp = y[k] - b[k - 1] * y[k - 1] - d__[k - 2] * y[k - 2];
} else if (k == 2) {
temp = y[k] - b[k - 1] * y[k - 1];
} else {
temp = y[k];
}
ak = a[k];
absak = absMACRO(ak);
if (absak < 1.) {
if (absak < sfmin) {
if (absak == 0. || absMACRO(temp) * sfmin > absak) {
*info = k;
return 0;
} else {
temp *= bignum;
ak *= bignum;
}
} else if (absMACRO(temp) > absak * bignum) {
*info = k;
return 0;
}
}
y[k] = temp / ak;
/* L60: */
}
} else {
i__1 = *n;
for (k = 1; k <= i__1; ++k) {
if (k >= 3) {
temp = y[k] - b[k - 1] * y[k - 1] - d__[k - 2] * y[k - 2];
} else if (k == 2) {
temp = y[k] - b[k - 1] * y[k - 1];
} else {
temp = y[k];
}
ak = a[k];
pert = template_lapack_d_sign(tol, &ak);
L70:
absak = absMACRO(ak);
if (absak < 1.) {
if (absak < sfmin) {
if (absak == 0. || absMACRO(temp) * sfmin > absak) {
ak += pert;
pert *= 2;
goto L70;
} else {
temp *= bignum;
ak *= bignum;
}
} else if (absMACRO(temp) > absak * bignum) {
ak += pert;
pert *= 2;
goto L70;
}
}
y[k] = temp / ak;
/* L80: */
}
}
for (k = *n; k >= 2; --k) {
if (in[k - 1] == 0) {
y[k - 1] -= c__[k - 1] * y[k];
} else {
temp = y[k - 1];
y[k - 1] = y[k];
y[k] = temp - c__[k - 1] * y[k];
}
/* L90: */
}
}
/* End of DLAGTS */
return 0;
} /* dlagts_ */
#endif
|