1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/* This file belongs to the template_lapack part of the Ergo source
* code. The source files in the template_lapack directory are modified
* versions of files originally distributed as CLAPACK, see the
* Copyright/license notice in the file template_lapack/COPYING.
*/
#ifndef TEMPLATE_LAPACK_LANST_HEADER
#define TEMPLATE_LAPACK_LANST_HEADER
template<class Treal>
Treal template_lapack_lanst(const char *norm, const integer *n, const Treal *d__, const Treal *e)
{
/* -- LAPACK auxiliary routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
February 29, 1992
Purpose
=======
DLANST returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
real symmetric tridiagonal matrix A.
Description
===========
DLANST returns the value
DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a matrix norm.
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in DLANST as described
above.
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, DLANST is
set to zero.
D (input) DOUBLE PRECISION array, dimension (N)
The diagonal elements of A.
E (input) DOUBLE PRECISION array, dimension (N-1)
The (n-1) sub-diagonal or super-diagonal elements of A.
=====================================================================
Parameter adjustments */
/* Table of constant values */
integer c__1 = 1;
/* System generated locals */
integer i__1;
Treal ret_val, d__1, d__2, d__3, d__4, d__5;
/* Local variables */
integer i__;
Treal scale;
Treal anorm;
Treal sum;
--e;
--d__;
/* Initialization added by Elias to get rid of compiler warnings. */
anorm = 0;
/* Function Body */
if (*n <= 0) {
anorm = 0.;
} else if (template_blas_lsame(norm, "M")) {
/* Find max(abs(A(i,j))). */
anorm = (d__1 = d__[*n], absMACRO(d__1));
i__1 = *n - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
d__2 = anorm, d__3 = (d__1 = d__[i__], absMACRO(d__1));
anorm = maxMACRO(d__2,d__3);
/* Computing MAX */
d__2 = anorm, d__3 = (d__1 = e[i__], absMACRO(d__1));
anorm = maxMACRO(d__2,d__3);
/* L10: */
}
} else if (template_blas_lsame(norm, "O") || *(unsigned char *)
norm == '1' || template_blas_lsame(norm, "I")) {
/* Find norm1(A). */
if (*n == 1) {
anorm = absMACRO(d__[1]);
} else {
/* Computing MAX */
d__3 = absMACRO(d__[1]) + absMACRO(e[1]), d__4 = (d__1 = e[*n - 1], absMACRO(
d__1)) + (d__2 = d__[*n], absMACRO(d__2));
anorm = maxMACRO(d__3,d__4);
i__1 = *n - 1;
for (i__ = 2; i__ <= i__1; ++i__) {
/* Computing MAX */
d__4 = anorm, d__5 = (d__1 = d__[i__], absMACRO(d__1)) + (d__2 = e[
i__], absMACRO(d__2)) + (d__3 = e[i__ - 1], absMACRO(d__3));
anorm = maxMACRO(d__4,d__5);
/* L20: */
}
}
} else if (template_blas_lsame(norm, "F") || template_blas_lsame(norm, "E")) {
/* Find normF(A). */
scale = 0.;
sum = 1.;
if (*n > 1) {
i__1 = *n - 1;
template_lapack_lassq(&i__1, &e[1], &c__1, &scale, &sum);
sum *= 2;
}
template_lapack_lassq(n, &d__[1], &c__1, &scale, &sum);
anorm = scale * template_blas_sqrt(sum);
}
ret_val = anorm;
return ret_val;
/* End of DLANST */
} /* dlanst_ */
#endif
|