File: template_lapack_lanst.h

package info (click to toggle)
ergo 3.8.2-1.1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 17,568 kB
  • sloc: cpp: 94,763; ansic: 17,785; sh: 10,701; makefile: 1,403; yacc: 127; lex: 116; awk: 23
file content (175 lines) | stat: -rw-r--r-- 5,437 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */
 
 /* This file belongs to the template_lapack part of the Ergo source 
  * code. The source files in the template_lapack directory are modified
  * versions of files originally distributed as CLAPACK, see the
  * Copyright/license notice in the file template_lapack/COPYING.
  */
 

#ifndef TEMPLATE_LAPACK_LANST_HEADER
#define TEMPLATE_LAPACK_LANST_HEADER


template<class Treal>
Treal template_lapack_lanst(const char *norm, const integer *n, const Treal *d__, const Treal *e)
{
/*  -- LAPACK auxiliary routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       February 29, 1992   


    Purpose   
    =======   

    DLANST  returns the value of the one norm,  or the Frobenius norm, or   
    the  infinity norm,  or the  element of  largest absolute value  of a   
    real symmetric tridiagonal matrix A.   

    Description   
    ===========   

    DLANST returns the value   

       DLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm'   
                (   
                ( norm1(A),         NORM = '1', 'O' or 'o'   
                (   
                ( normI(A),         NORM = 'I' or 'i'   
                (   
                ( normF(A),         NORM = 'F', 'f', 'E' or 'e'   

    where  norm1  denotes the  one norm of a matrix (maximum column sum),   
    normI  denotes the  infinity norm  of a matrix  (maximum row sum) and   
    normF  denotes the  Frobenius norm of a matrix (square root of sum of   
    squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm.   

    Arguments   
    =========   

    NORM    (input) CHARACTER*1   
            Specifies the value to be returned in DLANST as described   
            above.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.  When N = 0, DLANST is   
            set to zero.   

    D       (input) DOUBLE PRECISION array, dimension (N)   
            The diagonal elements of A.   

    E       (input) DOUBLE PRECISION array, dimension (N-1)   
            The (n-1) sub-diagonal or super-diagonal elements of A.   

    =====================================================================   


       Parameter adjustments */
    /* Table of constant values */
     integer c__1 = 1;
    
    /* System generated locals */
    integer i__1;
    Treal ret_val, d__1, d__2, d__3, d__4, d__5;
    /* Local variables */
     integer i__;
     Treal scale;
     Treal anorm;
     Treal sum;


    --e;
    --d__;

    /* Initialization added by Elias to get rid of compiler warnings. */
    anorm = 0;
    /* Function Body */
    if (*n <= 0) {
	anorm = 0.;
    } else if (template_blas_lsame(norm, "M")) {

/*        Find max(abs(A(i,j))). */

	anorm = (d__1 = d__[*n], absMACRO(d__1));
	i__1 = *n - 1;
	for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
	    d__2 = anorm, d__3 = (d__1 = d__[i__], absMACRO(d__1));
	    anorm = maxMACRO(d__2,d__3);
/* Computing MAX */
	    d__2 = anorm, d__3 = (d__1 = e[i__], absMACRO(d__1));
	    anorm = maxMACRO(d__2,d__3);
/* L10: */
	}
    } else if (template_blas_lsame(norm, "O") || *(unsigned char *)
	    norm == '1' || template_blas_lsame(norm, "I")) {

/*        Find norm1(A). */

	if (*n == 1) {
	    anorm = absMACRO(d__[1]);
	} else {
/* Computing MAX */
	    d__3 = absMACRO(d__[1]) + absMACRO(e[1]), d__4 = (d__1 = e[*n - 1], absMACRO(
		    d__1)) + (d__2 = d__[*n], absMACRO(d__2));
	    anorm = maxMACRO(d__3,d__4);
	    i__1 = *n - 1;
	    for (i__ = 2; i__ <= i__1; ++i__) {
/* Computing MAX */
		d__4 = anorm, d__5 = (d__1 = d__[i__], absMACRO(d__1)) + (d__2 = e[
			i__], absMACRO(d__2)) + (d__3 = e[i__ - 1], absMACRO(d__3));
		anorm = maxMACRO(d__4,d__5);
/* L20: */
	    }
	}
    } else if (template_blas_lsame(norm, "F") || template_blas_lsame(norm, "E")) {

/*        Find normF(A). */

	scale = 0.;
	sum = 1.;
	if (*n > 1) {
	    i__1 = *n - 1;
	    template_lapack_lassq(&i__1, &e[1], &c__1, &scale, &sum);
	    sum *= 2;
	}
	template_lapack_lassq(n, &d__[1], &c__1, &scale, &sum);
	anorm = scale * template_blas_sqrt(sum);
    }

    ret_val = anorm;
    return ret_val;

/*     End of DLANST */

} /* dlanst_ */

#endif