1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/* This file belongs to the template_lapack part of the Ergo source
* code. The source files in the template_lapack directory are modified
* versions of files originally distributed as CLAPACK, see the
* Copyright/license notice in the file template_lapack/COPYING.
*/
#ifndef TEMPLATE_LAPACK_LANSY_HEADER
#define TEMPLATE_LAPACK_LANSY_HEADER
template<class Treal>
Treal template_lapack_lansy(const char *norm, const char *uplo, const integer *n, const Treal *a, const integer
*lda, Treal *work)
{
/* -- LAPACK auxiliary routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
October 31, 1992
Purpose
=======
DLANSY returns the value of the one norm, or the Frobenius norm, or
the infinity norm, or the element of largest absolute value of a
real symmetric matrix A.
Description
===========
DLANSY returns the value
DLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm'
(
( norm1(A), NORM = '1', 'O' or 'o'
(
( normI(A), NORM = 'I' or 'i'
(
( normF(A), NORM = 'F', 'f', 'E' or 'e'
where norm1 denotes the one norm of a matrix (maximum column sum),
normI denotes the infinity norm of a matrix (maximum row sum) and
normF denotes the Frobenius norm of a matrix (square root of sum of
squares). Note that max(abs(A(i,j))) is not a matrix norm.
Arguments
=========
NORM (input) CHARACTER*1
Specifies the value to be returned in DLANSY as described
above.
UPLO (input) CHARACTER*1
Specifies whether the upper or lower triangular part of the
symmetric matrix A is to be referenced.
= 'U': Upper triangular part of A is referenced
= 'L': Lower triangular part of A is referenced
N (input) INTEGER
The order of the matrix A. N >= 0. When N = 0, DLANSY is
set to zero.
A (input) DOUBLE PRECISION array, dimension (LDA,N)
The symmetric matrix A. If UPLO = 'U', the leading n by n
upper triangular part of A contains the upper triangular part
of the matrix A, and the strictly lower triangular part of A
is not referenced. If UPLO = 'L', the leading n by n lower
triangular part of A contains the lower triangular part of
the matrix A, and the strictly upper triangular part of A is
not referenced.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(N,1).
WORK (workspace) DOUBLE PRECISION array, dimension (LWORK),
where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
WORK is not referenced.
=====================================================================
Parameter adjustments */
/* Table of constant values */
integer c__1 = 1;
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2;
Treal ret_val, d__1, d__2, d__3;
/* Local variables */
Treal absa;
integer i__, j;
Treal scale;
Treal value;
Treal sum;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--work;
/* Initialization added by Elias to get rid of compiler warnings. */
value = 0;
/* Function Body */
if (*n == 0) {
value = 0.;
} else if (template_blas_lsame(norm, "M")) {
/* Find max(abs(A(i,j))). */
value = 0.;
if (template_blas_lsame(uplo, "U")) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing MAX */
d__2 = value, d__3 = (d__1 = a_ref(i__, j), absMACRO(d__1));
value = maxMACRO(d__2,d__3);
/* L10: */
}
/* L20: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = j; i__ <= i__2; ++i__) {
/* Computing MAX */
d__2 = value, d__3 = (d__1 = a_ref(i__, j), absMACRO(d__1));
value = maxMACRO(d__2,d__3);
/* L30: */
}
/* L40: */
}
}
} else if (template_blas_lsame(norm, "I") || template_blas_lsame(norm, "O") || *(unsigned char *)norm == '1') {
/* Find normI(A) ( = norm1(A), since A is symmetric). */
value = 0.;
if (template_blas_lsame(uplo, "U")) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
sum = 0.;
i__2 = j - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
absa = (d__1 = a_ref(i__, j), absMACRO(d__1));
sum += absa;
work[i__] += absa;
/* L50: */
}
work[j] = sum + (d__1 = a_ref(j, j), absMACRO(d__1));
/* L60: */
}
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
d__1 = value, d__2 = work[i__];
value = maxMACRO(d__1,d__2);
/* L70: */
}
} else {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
work[i__] = 0.;
/* L80: */
}
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
sum = work[j] + (d__1 = a_ref(j, j), absMACRO(d__1));
i__2 = *n;
for (i__ = j + 1; i__ <= i__2; ++i__) {
absa = (d__1 = a_ref(i__, j), absMACRO(d__1));
sum += absa;
work[i__] += absa;
/* L90: */
}
value = maxMACRO(value,sum);
/* L100: */
}
}
} else if (template_blas_lsame(norm, "F") || template_blas_lsame(norm, "E")) {
/* Find normF(A). */
scale = 0.;
sum = 1.;
if (template_blas_lsame(uplo, "U")) {
i__1 = *n;
for (j = 2; j <= i__1; ++j) {
i__2 = j - 1;
template_lapack_lassq(&i__2, &a_ref(1, j), &c__1, &scale, &sum);
/* L110: */
}
} else {
i__1 = *n - 1;
for (j = 1; j <= i__1; ++j) {
i__2 = *n - j;
template_lapack_lassq(&i__2, &a_ref(j + 1, j), &c__1, &scale, &sum);
/* L120: */
}
}
sum *= 2;
i__1 = *lda + 1;
template_lapack_lassq(n, &a[a_offset], &i__1, &scale, &sum);
value = scale * template_blas_sqrt(sum);
}
ret_val = value;
return ret_val;
/* End of DLANSY */
} /* dlansy_ */
#undef a_ref
#endif
|