File: template_lapack_lansy.h

package info (click to toggle)
ergo 3.8.2-1.1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 17,568 kB
  • sloc: cpp: 94,763; ansic: 17,785; sh: 10,701; makefile: 1,403; yacc: 127; lex: 116; awk: 23
file content (251 lines) | stat: -rw-r--r-- 7,491 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */
 
 /* This file belongs to the template_lapack part of the Ergo source 
  * code. The source files in the template_lapack directory are modified
  * versions of files originally distributed as CLAPACK, see the
  * Copyright/license notice in the file template_lapack/COPYING.
  */
 

#ifndef TEMPLATE_LAPACK_LANSY_HEADER
#define TEMPLATE_LAPACK_LANSY_HEADER


template<class Treal>
Treal template_lapack_lansy(const char *norm, const char *uplo, const integer *n, const Treal *a, const integer 
	*lda, Treal *work)
{
/*  -- LAPACK auxiliary routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       October 31, 1992   


    Purpose   
    =======   

    DLANSY  returns the value of the one norm,  or the Frobenius norm, or   
    the  infinity norm,  or the  element of  largest absolute value  of a   
    real symmetric matrix A.   

    Description   
    ===========   

    DLANSY returns the value   

       DLANSY = ( max(abs(A(i,j))), NORM = 'M' or 'm'   
                (   
                ( norm1(A),         NORM = '1', 'O' or 'o'   
                (   
                ( normI(A),         NORM = 'I' or 'i'   
                (   
                ( normF(A),         NORM = 'F', 'f', 'E' or 'e'   

    where  norm1  denotes the  one norm of a matrix (maximum column sum),   
    normI  denotes the  infinity norm  of a matrix  (maximum row sum) and   
    normF  denotes the  Frobenius norm of a matrix (square root of sum of   
    squares).  Note that  max(abs(A(i,j)))  is not a  matrix norm.   

    Arguments   
    =========   

    NORM    (input) CHARACTER*1   
            Specifies the value to be returned in DLANSY as described   
            above.   

    UPLO    (input) CHARACTER*1   
            Specifies whether the upper or lower triangular part of the   
            symmetric matrix A is to be referenced.   
            = 'U':  Upper triangular part of A is referenced   
            = 'L':  Lower triangular part of A is referenced   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.  When N = 0, DLANSY is   
            set to zero.   

    A       (input) DOUBLE PRECISION array, dimension (LDA,N)   
            The symmetric matrix A.  If UPLO = 'U', the leading n by n   
            upper triangular part of A contains the upper triangular part   
            of the matrix A, and the strictly lower triangular part of A   
            is not referenced.  If UPLO = 'L', the leading n by n lower   
            triangular part of A contains the lower triangular part of   
            the matrix A, and the strictly upper triangular part of A is   
            not referenced.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(N,1).   

    WORK    (workspace) DOUBLE PRECISION array, dimension (LWORK),   
            where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,   
            WORK is not referenced.   

   =====================================================================   


       Parameter adjustments */
    /* Table of constant values */
     integer c__1 = 1;
    
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2;
    Treal ret_val, d__1, d__2, d__3;
    /* Local variables */
     Treal absa;
     integer i__, j;
     Treal scale;
     Treal value;
     Treal sum;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]


    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    --work;

    /* Initialization added by Elias to get rid of compiler warnings. */
    value = 0;
    /* Function Body */
    if (*n == 0) {
	value = 0.;
    } else if (template_blas_lsame(norm, "M")) {

/*        Find max(abs(A(i,j))). */

	value = 0.;
	if (template_blas_lsame(uplo, "U")) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = j;
		for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing MAX */
		    d__2 = value, d__3 = (d__1 = a_ref(i__, j), absMACRO(d__1));
		    value = maxMACRO(d__2,d__3);
/* L10: */
		}
/* L20: */
	    }
	} else {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *n;
		for (i__ = j; i__ <= i__2; ++i__) {
/* Computing MAX */
		    d__2 = value, d__3 = (d__1 = a_ref(i__, j), absMACRO(d__1));
		    value = maxMACRO(d__2,d__3);
/* L30: */
		}
/* L40: */
	    }
	}
    } else if (template_blas_lsame(norm, "I") || template_blas_lsame(norm, "O") || *(unsigned char *)norm == '1') {

/*        Find normI(A) ( = norm1(A), since A is symmetric). */

	value = 0.;
	if (template_blas_lsame(uplo, "U")) {
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		sum = 0.;
		i__2 = j - 1;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    absa = (d__1 = a_ref(i__, j), absMACRO(d__1));
		    sum += absa;
		    work[i__] += absa;
/* L50: */
		}
		work[j] = sum + (d__1 = a_ref(j, j), absMACRO(d__1));
/* L60: */
	    }
	    i__1 = *n;
	    for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
		d__1 = value, d__2 = work[i__];
		value = maxMACRO(d__1,d__2);
/* L70: */
	    }
	} else {
	    i__1 = *n;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		work[i__] = 0.;
/* L80: */
	    }
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		sum = work[j] + (d__1 = a_ref(j, j), absMACRO(d__1));
		i__2 = *n;
		for (i__ = j + 1; i__ <= i__2; ++i__) {
		    absa = (d__1 = a_ref(i__, j), absMACRO(d__1));
		    sum += absa;
		    work[i__] += absa;
/* L90: */
		}
		value = maxMACRO(value,sum);
/* L100: */
	    }
	}
    } else if (template_blas_lsame(norm, "F") || template_blas_lsame(norm, "E")) {

/*        Find normF(A). */

	scale = 0.;
	sum = 1.;
	if (template_blas_lsame(uplo, "U")) {
	    i__1 = *n;
	    for (j = 2; j <= i__1; ++j) {
		i__2 = j - 1;
		template_lapack_lassq(&i__2, &a_ref(1, j), &c__1, &scale, &sum);
/* L110: */
	    }
	} else {
	    i__1 = *n - 1;
	    for (j = 1; j <= i__1; ++j) {
		i__2 = *n - j;
		template_lapack_lassq(&i__2, &a_ref(j + 1, j), &c__1, &scale, &sum);
/* L120: */
	    }
	}
	sum *= 2;
	i__1 = *lda + 1;
	template_lapack_lassq(n, &a[a_offset], &i__1, &scale, &sum);
	value = scale * template_blas_sqrt(sum);
    }

    ret_val = value;
    return ret_val;

/*     End of DLANSY */

} /* dlansy_ */

#undef a_ref


#endif