1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/* This file belongs to the template_lapack part of the Ergo source
* code. The source files in the template_lapack directory are modified
* versions of files originally distributed as CLAPACK, see the
* Copyright/license notice in the file template_lapack/COPYING.
*/
#ifndef TEMPLATE_LAPACK_LARFG_HEADER
#define TEMPLATE_LAPACK_LARFG_HEADER
#include "template_lapack_lapy2.h"
template<class Treal>
int template_lapack_larfg(const integer *n, Treal *alpha, Treal *x,
const integer *incx, Treal *tau)
{
/* -- LAPACK auxiliary routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
September 30, 1994
Purpose
=======
DLARFG generates a real elementary reflector H of order n, such
that
H * ( alpha ) = ( beta ), H' * H = I.
( x ) ( 0 )
where alpha and beta are scalars, and x is an (n-1)-element real
vector. H is represented in the form
H = I - tau * ( 1 ) * ( 1 v' ) ,
( v )
where tau is a real scalar and v is a real (n-1)-element
vector.
If the elements of x are all zero, then tau = 0 and H is taken to be
the unit matrix.
Otherwise 1 <= tau <= 2.
Arguments
=========
N (input) INTEGER
The order of the elementary reflector.
ALPHA (input/output) DOUBLE PRECISION
On entry, the value alpha.
On exit, it is overwritten with the value beta.
X (input/output) DOUBLE PRECISION array, dimension
(1+(N-2)*abs(INCX))
On entry, the vector x.
On exit, it is overwritten with the vector v.
INCX (input) INTEGER
The increment between elements of X. INCX > 0.
TAU (output) DOUBLE PRECISION
The value tau.
=====================================================================
Parameter adjustments */
/* System generated locals */
integer i__1;
Treal d__1;
/* Local variables */
Treal beta;
integer j;
Treal xnorm;
Treal safmin, rsafmn;
integer knt;
--x;
/* Function Body */
if (*n <= 1) {
*tau = 0.;
return 0;
}
i__1 = *n - 1;
xnorm = template_blas_nrm2(&i__1, &x[1], incx);
if (xnorm == 0.) {
/* H = I */
*tau = 0.;
} else {
/* general case */
d__1 = template_lapack_lapy2(alpha, &xnorm);
beta = -template_lapack_d_sign(&d__1, alpha);
safmin = template_lapack_lamch("S", (Treal)0) / template_lapack_lamch("E", (Treal)0);
if (absMACRO(beta) < safmin) {
/* XNORM, BETA may be inaccurate; scale X and recompute them */
rsafmn = 1. / safmin;
knt = 0;
L10:
++knt;
i__1 = *n - 1;
template_blas_scal(&i__1, &rsafmn, &x[1], incx);
beta *= rsafmn;
*alpha *= rsafmn;
if (absMACRO(beta) < safmin) {
goto L10;
}
/* New BETA is at most 1, at least SAFMIN */
i__1 = *n - 1;
xnorm = template_blas_nrm2(&i__1, &x[1], incx);
d__1 = template_lapack_lapy2(alpha, &xnorm);
beta = -template_lapack_d_sign(&d__1, alpha);
*tau = (beta - *alpha) / beta;
i__1 = *n - 1;
d__1 = 1. / (*alpha - beta);
template_blas_scal(&i__1, &d__1, &x[1], incx);
/* If ALPHA is subnormal, it may lose relative accuracy */
*alpha = beta;
i__1 = knt;
for (j = 1; j <= i__1; ++j) {
*alpha *= safmin;
/* L20: */
}
} else {
*tau = (beta - *alpha) / beta;
i__1 = *n - 1;
d__1 = 1. / (*alpha - beta);
template_blas_scal(&i__1, &d__1, &x[1], incx);
*alpha = beta;
}
}
return 0;
/* End of DLARFG */
} /* dlarfg_ */
#endif
|