1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/* This file belongs to the template_lapack part of the Ergo source
* code. The source files in the template_lapack directory are modified
* versions of files originally distributed as CLAPACK, see the
* Copyright/license notice in the file template_lapack/COPYING.
*/
#ifndef TEMPLATE_LAPACK_LARFT_HEADER
#define TEMPLATE_LAPACK_LARFT_HEADER
template<class Treal>
int template_lapack_larft(const char *direct, const char *storev, const integer *n, const integer *
k, Treal *v, const integer *ldv, const Treal *tau, Treal *t,
const integer *ldt)
{
/* -- LAPACK auxiliary routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
February 29, 1992
Purpose
=======
DLARFT forms the triangular factor T of a real block reflector H
of order n, which is defined as a product of k elementary reflectors.
If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
If STOREV = 'C', the vector which defines the elementary reflector
H(i) is stored in the i-th column of the array V, and
H = I - V * T * V'
If STOREV = 'R', the vector which defines the elementary reflector
H(i) is stored in the i-th row of the array V, and
H = I - V' * T * V
Arguments
=========
DIRECT (input) CHARACTER*1
Specifies the order in which the elementary reflectors are
multiplied to form the block reflector:
= 'F': H = H(1) H(2) . . . H(k) (Forward)
= 'B': H = H(k) . . . H(2) H(1) (Backward)
STOREV (input) CHARACTER*1
Specifies how the vectors which define the elementary
reflectors are stored (see also Further Details):
= 'C': columnwise
= 'R': rowwise
N (input) INTEGER
The order of the block reflector H. N >= 0.
K (input) INTEGER
The order of the triangular factor T (= the number of
elementary reflectors). K >= 1.
V (input/output) DOUBLE PRECISION array, dimension
(LDV,K) if STOREV = 'C'
(LDV,N) if STOREV = 'R'
The matrix V. See further details.
LDV (input) INTEGER
The leading dimension of the array V.
If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i).
T (output) DOUBLE PRECISION array, dimension (LDT,K)
The k by k triangular factor T of the block reflector.
If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
lower triangular. The rest of the array is not used.
LDT (input) INTEGER
The leading dimension of the array T. LDT >= K.
Further Details
===============
The shape of the matrix V and the storage of the vectors which define
the H(i) is best illustrated by the following example with n = 5 and
k = 3. The elements equal to 1 are not stored; the corresponding
array elements are modified but restored on exit. The rest of the
array is not used.
DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
( v1 1 ) ( 1 v2 v2 v2 )
( v1 v2 1 ) ( 1 v3 v3 )
( v1 v2 v3 )
( v1 v2 v3 )
DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
V = ( v1 v2 v3 ) V = ( v1 v1 1 )
( v1 v2 v3 ) ( v2 v2 v2 1 )
( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
( 1 v3 )
( 1 )
=====================================================================
Quick return if possible
Parameter adjustments */
/* Table of constant values */
integer c__1 = 1;
Treal c_b8 = 0.;
/* System generated locals */
integer t_dim1, t_offset, v_dim1, v_offset, i__1, i__2, i__3;
Treal d__1;
/* Local variables */
integer i__, j;
Treal vii;
#define t_ref(a_1,a_2) t[(a_2)*t_dim1 + a_1]
#define v_ref(a_1,a_2) v[(a_2)*v_dim1 + a_1]
v_dim1 = *ldv;
v_offset = 1 + v_dim1 * 1;
v -= v_offset;
--tau;
t_dim1 = *ldt;
t_offset = 1 + t_dim1 * 1;
t -= t_offset;
/* Function Body */
if (*n == 0) {
return 0;
}
if (template_blas_lsame(direct, "F")) {
i__1 = *k;
for (i__ = 1; i__ <= i__1; ++i__) {
if (tau[i__] == 0.) {
/* H(i) = I */
i__2 = i__;
for (j = 1; j <= i__2; ++j) {
t_ref(j, i__) = 0.;
/* L10: */
}
} else {
/* general case */
vii = v_ref(i__, i__);
v_ref(i__, i__) = 1.;
if (template_blas_lsame(storev, "C")) {
/* T(1:i-1,i) := - tau(i) * V(i:n,1:i-1)' * V(i:n,i) */
i__2 = *n - i__ + 1;
i__3 = i__ - 1;
d__1 = -tau[i__];
template_blas_gemv("Transpose", &i__2, &i__3, &d__1, &v_ref(i__, 1),
ldv, &v_ref(i__, i__), &c__1, &c_b8, &t_ref(1,
i__), &c__1);
} else {
/* T(1:i-1,i) := - tau(i) * V(1:i-1,i:n) * V(i,i:n)' */
i__2 = i__ - 1;
i__3 = *n - i__ + 1;
d__1 = -tau[i__];
template_blas_gemv("No transpose", &i__2, &i__3, &d__1, &v_ref(1, i__)
, ldv, &v_ref(i__, i__), ldv, &c_b8, &t_ref(1,
i__), &c__1);
}
v_ref(i__, i__) = vii;
/* T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i) */
i__2 = i__ - 1;
template_blas_trmv("Upper", "No transpose", "Non-unit", &i__2, &t[
t_offset], ldt, &t_ref(1, i__), &c__1);
t_ref(i__, i__) = tau[i__];
}
/* L20: */
}
} else {
for (i__ = *k; i__ >= 1; --i__) {
if (tau[i__] == 0.) {
/* H(i) = I */
i__1 = *k;
for (j = i__; j <= i__1; ++j) {
t_ref(j, i__) = 0.;
/* L30: */
}
} else {
/* general case */
if (i__ < *k) {
if (template_blas_lsame(storev, "C")) {
vii = v_ref(*n - *k + i__, i__);
v_ref(*n - *k + i__, i__) = 1.;
/* T(i+1:k,i) :=
- tau(i) * V(1:n-k+i,i+1:k)' * V(1:n-k+i,i) */
i__1 = *n - *k + i__;
i__2 = *k - i__;
d__1 = -tau[i__];
template_blas_gemv("Transpose", &i__1, &i__2, &d__1, &v_ref(1,
i__ + 1), ldv, &v_ref(1, i__), &c__1, &c_b8, &
t_ref(i__ + 1, i__), &c__1);
v_ref(*n - *k + i__, i__) = vii;
} else {
vii = v_ref(i__, *n - *k + i__);
v_ref(i__, *n - *k + i__) = 1.;
/* T(i+1:k,i) :=
- tau(i) * V(i+1:k,1:n-k+i) * V(i,1:n-k+i)' */
i__1 = *k - i__;
i__2 = *n - *k + i__;
d__1 = -tau[i__];
template_blas_gemv("No transpose", &i__1, &i__2, &d__1, &v_ref(
i__ + 1, 1), ldv, &v_ref(i__, 1), ldv, &c_b8,
&t_ref(i__ + 1, i__), &c__1);
v_ref(i__, *n - *k + i__) = vii;
}
/* T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i) */
i__1 = *k - i__;
template_blas_trmv("Lower", "No transpose", "Non-unit", &i__1, &t_ref(
i__ + 1, i__ + 1), ldt, &t_ref(i__ + 1, i__), &
c__1);
}
t_ref(i__, i__) = tau[i__];
}
/* L40: */
}
}
return 0;
/* End of DLARFT */
} /* dlarft_ */
#undef v_ref
#undef t_ref
#endif
|