1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/* This file belongs to the template_lapack part of the Ergo source
* code. The source files in the template_lapack directory are modified
* versions of files originally distributed as CLAPACK, see the
* Copyright/license notice in the file template_lapack/COPYING.
*/
#ifndef TEMPLATE_LAPACK_LARRV_HEADER
#define TEMPLATE_LAPACK_LARRV_HEADER
#include "template_lapack_lar1v.h"
template<class Treal>
int template_lapack_larrv(const integer *n, Treal *vl, Treal *vu,
Treal *d__, Treal *l, Treal *pivmin, integer *isplit,
integer *m, integer *dol, integer *dou, Treal *minrgp,
Treal *rtol1, Treal *rtol2, Treal *w, Treal *werr,
Treal *wgap, integer *iblock, integer *indexw, Treal *gers,
Treal *z__, const integer *ldz, integer *isuppz, Treal *work,
integer *iwork, integer *info)
{
/* System generated locals */
integer z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5;
Treal d__1, d__2;
logical L__1;
/* Local variables */
integer minwsize, i__, j, k, p, q, miniwsize, ii;
Treal gl;
integer im, in;
Treal gu, gap, eps, tau, tol, tmp;
integer zto;
Treal ztz;
integer iend, jblk;
Treal lgap;
integer done;
Treal rgap, left;
integer wend, iter;
Treal bstw = 0; // EMANUEL COMMENT: initialize to get rid of compiler warning
integer itmp1;
integer indld;
Treal fudge;
integer idone;
Treal sigma;
integer iinfo, iindr;
Treal resid;
logical eskip;
Treal right;
integer nclus, zfrom;
Treal rqtol;
integer iindc1, iindc2;
logical stp2ii;
Treal lambda;
integer ibegin, indeig;
logical needbs;
integer indlld;
Treal sgndef, mingma;
integer oldien, oldncl, wbegin;
Treal spdiam;
integer negcnt;
integer oldcls;
Treal savgap;
integer ndepth;
Treal ssigma;
logical usedbs;
integer iindwk, offset;
Treal gaptol;
integer newcls, oldfst, indwrk, windex, oldlst;
logical usedrq;
integer newfst, newftt, parity, windmn, windpl, isupmn, newlst, zusedl;
Treal bstres = 0; // EMANUEL COMMENT: initialize to get rid of compiler warning
integer newsiz, zusedu, zusedw;
Treal nrminv, rqcorr;
logical tryrqc;
integer isupmx;
/* -- LAPACK auxiliary routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DLARRV computes the eigenvectors of the tridiagonal matrix */
/* T = L D L^T given L, D and APPROXIMATIONS to the eigenvalues of L D L^T. */
/* The input eigenvalues should have been computed by DLARRE. */
/* Arguments */
/* ========= */
/* N (input) INTEGER */
/* The order of the matrix. N >= 0. */
/* VL (input) DOUBLE PRECISION */
/* VU (input) DOUBLE PRECISION */
/* Lower and upper bounds of the interval that contains the desired */
/* eigenvalues. VL < VU. Needed to compute gaps on the left or right */
/* end of the extremal eigenvalues in the desired RANGE. */
/* D (input/output) DOUBLE PRECISION array, dimension (N) */
/* On entry, the N diagonal elements of the diagonal matrix D. */
/* On exit, D may be overwritten. */
/* L (input/output) DOUBLE PRECISION array, dimension (N) */
/* On entry, the (N-1) subdiagonal elements of the unit */
/* bidiagonal matrix L are in elements 1 to N-1 of L */
/* (if the matrix is not splitted.) At the end of each block */
/* is stored the corresponding shift as given by DLARRE. */
/* On exit, L is overwritten. */
/* PIVMIN (in) DOUBLE PRECISION */
/* The minimum pivot allowed in the Sturm sequence. */
/* ISPLIT (input) INTEGER array, dimension (N) */
/* The splitting points, at which T breaks up into blocks. */
/* The first block consists of rows/columns 1 to */
/* ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1 */
/* through ISPLIT( 2 ), etc. */
/* M (input) INTEGER */
/* The total number of input eigenvalues. 0 <= M <= N. */
/* DOL (input) INTEGER */
/* DOU (input) INTEGER */
/* If the user wants to compute only selected eigenvectors from all */
/* the eigenvalues supplied, he can specify an index range DOL:DOU. */
/* Or else the setting DOL=1, DOU=M should be applied. */
/* Note that DOL and DOU refer to the order in which the eigenvalues */
/* are stored in W. */
/* If the user wants to compute only selected eigenpairs, then */
/* the columns DOL-1 to DOU+1 of the eigenvector space Z contain the */
/* computed eigenvectors. All other columns of Z are set to zero. */
/* MINRGP (input) DOUBLE PRECISION */
/* RTOL1 (input) DOUBLE PRECISION */
/* RTOL2 (input) DOUBLE PRECISION */
/* Parameters for bisection. */
/* An interval [LEFT,RIGHT] has converged if */
/* RIGHT-LEFT.LT.MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) ) */
/* W (input/output) DOUBLE PRECISION array, dimension (N) */
/* The first M elements of W contain the APPROXIMATE eigenvalues for */
/* which eigenvectors are to be computed. The eigenvalues */
/* should be grouped by split-off block and ordered from */
/* smallest to largest within the block ( The output array */
/* W from DLARRE is expected here ). Furthermore, they are with */
/* respect to the shift of the corresponding root representation */
/* for their block. On exit, W holds the eigenvalues of the */
/* UNshifted matrix. */
/* WERR (input/output) DOUBLE PRECISION array, dimension (N) */
/* The first M elements contain the semiwidth of the uncertainty */
/* interval of the corresponding eigenvalue in W */
/* WGAP (input/output) DOUBLE PRECISION array, dimension (N) */
/* The separation from the right neighbor eigenvalue in W. */
/* IBLOCK (input) INTEGER array, dimension (N) */
/* The indices of the blocks (submatrices) associated with the */
/* corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue */
/* W(i) belongs to the first block from the top, =2 if W(i) */
/* belongs to the second block, etc. */
/* INDEXW (input) INTEGER array, dimension (N) */
/* The indices of the eigenvalues within each block (submatrix); */
/* for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the */
/* i-th eigenvalue W(i) is the 10-th eigenvalue in the second block. */
/* GERS (input) DOUBLE PRECISION array, dimension (2*N) */
/* The N Gerschgorin intervals (the i-th Gerschgorin interval */
/* is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should */
/* be computed from the original UNshifted matrix. */
/* Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) ) */
/* If INFO = 0, the first M columns of Z contain the */
/* orthonormal eigenvectors of the matrix T */
/* corresponding to the input eigenvalues, with the i-th */
/* column of Z holding the eigenvector associated with W(i). */
/* Note: the user must ensure that at least max(1,M) columns are */
/* supplied in the array Z. */
/* LDZ (input) INTEGER */
/* The leading dimension of the array Z. LDZ >= 1, and if */
/* JOBZ = 'V', LDZ >= max(1,N). */
/* ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) ) */
/* The support of the eigenvectors in Z, i.e., the indices */
/* indicating the nonzero elements in Z. The I-th eigenvector */
/* is nonzero only in elements ISUPPZ( 2*I-1 ) through */
/* ISUPPZ( 2*I ). */
/* WORK (workspace) DOUBLE PRECISION array, dimension (12*N) */
/* IWORK (workspace) INTEGER array, dimension (7*N) */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* > 0: A problem occured in DLARRV. */
/* < 0: One of the called subroutines signaled an internal problem. */
/* Needs inspection of the corresponding parameter IINFO */
/* for further information. */
/* =-1: Problem in DLARRB when refining a child's eigenvalues. */
/* =-2: Problem in DLARRF when computing the RRR of a child. */
/* When a child is inside a tight cluster, it can be difficult */
/* to find an RRR. A partial remedy from the user's point of */
/* view is to make the parameter MINRGP smaller and recompile. */
/* However, as the orthogonality of the computed vectors is */
/* proportional to 1/MINRGP, the user should be aware that */
/* he might be trading in precision when he decreases MINRGP. */
/* =-3: Problem in DLARRB when refining a single eigenvalue */
/* after the Rayleigh correction was rejected. */
/* = 5: The Rayleigh Quotient Iteration failed to converge to */
/* full accuracy in MAXITR steps. */
/* Further Details */
/* =============== */
/* Based on contributions by */
/* Beresford Parlett, University of California, Berkeley, USA */
/* Jim Demmel, University of California, Berkeley, USA */
/* Inderjit Dhillon, University of Texas, Austin, USA */
/* Osni Marques, LBNL/NERSC, USA */
/* Christof Voemel, University of California, Berkeley, USA */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* .. */
/* The first N entries of WORK are reserved for the eigenvalues */
/* Table of constant values */
Treal c_b5 = 0.;
integer c__1 = 1;
integer c__2 = 2;
/* Parameter adjustments */
--d__;
--l;
--isplit;
--w;
--werr;
--wgap;
--iblock;
--indexw;
--gers;
z_dim1 = *ldz;
z_offset = 1 + z_dim1;
z__ -= z_offset;
--isuppz;
--work;
--iwork;
/* Function Body */
indld = *n + 1;
indlld = (*n << 1) + 1;
indwrk = *n * 3 + 1;
minwsize = *n * 12;
i__1 = minwsize;
for (i__ = 1; i__ <= i__1; ++i__) {
work[i__] = 0.;
/* L5: */
}
/* IWORK(IINDR+1:IINDR+N) hold the twist indices R for the */
/* factorization used to compute the FP vector */
iindr = 0;
/* IWORK(IINDC1+1:IINC2+N) are used to store the clusters of the current */
/* layer and the one above. */
iindc1 = *n;
iindc2 = *n << 1;
iindwk = *n * 3 + 1;
miniwsize = *n * 7;
i__1 = miniwsize;
for (i__ = 1; i__ <= i__1; ++i__) {
iwork[i__] = 0;
/* L10: */
}
zusedl = 1;
if (*dol > 1) {
/* Set lower bound for use of Z */
zusedl = *dol - 1;
}
zusedu = *m;
if (*dou < *m) {
/* Set lower bound for use of Z */
zusedu = *dou + 1;
}
/* The width of the part of Z that is used */
zusedw = zusedu - zusedl + 1;
template_lapack_laset("Full", n, &zusedw, &c_b5, &c_b5, &z__[zusedl * z_dim1 + 1], ldz);
eps = template_lapack_lamch("Precision",(Treal)0);
rqtol = eps * 2.;
/* Set expert flags for standard code. */
tryrqc = TRUE_;
if (*dol == 1 && *dou == *m) {
} else {
/* Only selected eigenpairs are computed. Since the other evalues */
/* are not refined by RQ iteration, bisection has to compute to full */
/* accuracy. */
*rtol1 = eps * 4.;
*rtol2 = eps * 4.;
}
/* The entries WBEGIN:WEND in W, WERR, WGAP correspond to the */
/* desired eigenvalues. The support of the nonzero eigenvector */
/* entries is contained in the interval IBEGIN:IEND. */
/* Remark that if k eigenpairs are desired, then the eigenvectors */
/* are stored in k contiguous columns of Z. */
/* DONE is the number of eigenvectors already computed */
done = 0;
ibegin = 1;
wbegin = 1;
i__1 = iblock[*m];
for (jblk = 1; jblk <= i__1; ++jblk) {
iend = isplit[jblk];
sigma = l[iend];
/* Find the eigenvectors of the submatrix indexed IBEGIN */
/* through IEND. */
wend = wbegin - 1;
L15:
if (wend < *m) {
if (iblock[wend + 1] == jblk) {
++wend;
goto L15;
}
}
if (wend < wbegin) {
ibegin = iend + 1;
goto L170;
} else if (wend < *dol || wbegin > *dou) {
ibegin = iend + 1;
wbegin = wend + 1;
goto L170;
}
/* Find local spectral diameter of the block */
gl = gers[(ibegin << 1) - 1];
gu = gers[ibegin * 2];
i__2 = iend;
for (i__ = ibegin + 1; i__ <= i__2; ++i__) {
/* Computing MIN */
d__1 = gers[(i__ << 1) - 1];
gl = minMACRO(d__1,gl);
/* Computing MAX */
d__1 = gers[i__ * 2];
gu = maxMACRO(d__1,gu);
/* L20: */
}
spdiam = gu - gl;
/* OLDIEN is the last index of the previous block */
oldien = ibegin - 1;
/* Calculate the size of the current block */
in = iend - ibegin + 1;
/* The number of eigenvalues in the current block */
im = wend - wbegin + 1;
/* This is for a 1x1 block */
if (ibegin == iend) {
++done;
z__[ibegin + wbegin * z_dim1] = 1.;
isuppz[(wbegin << 1) - 1] = ibegin;
isuppz[wbegin * 2] = ibegin;
w[wbegin] += sigma;
work[wbegin] = w[wbegin];
ibegin = iend + 1;
++wbegin;
goto L170;
}
/* The desired (shifted) eigenvalues are stored in W(WBEGIN:WEND) */
/* Note that these can be approximations, in this case, the corresp. */
/* entries of WERR give the size of the uncertainty interval. */
/* The eigenvalue approximations will be refined when necessary as */
/* high relative accuracy is required for the computation of the */
/* corresponding eigenvectors. */
template_blas_copy(&im, &w[wbegin], &c__1, &work[wbegin], &c__1);
/* We store in W the eigenvalue approximations w.r.t. the original */
/* matrix T. */
i__2 = im;
for (i__ = 1; i__ <= i__2; ++i__) {
w[wbegin + i__ - 1] += sigma;
/* L30: */
}
/* NDEPTH is the current depth of the representation tree */
ndepth = 0;
/* PARITY is either 1 or 0 */
parity = 1;
/* NCLUS is the number of clusters for the next level of the */
/* representation tree, we start with NCLUS = 1 for the root */
nclus = 1;
iwork[iindc1 + 1] = 1;
iwork[iindc1 + 2] = im;
/* IDONE is the number of eigenvectors already computed in the current */
/* block */
idone = 0;
/* loop while( IDONE.LT.IM ) */
/* generate the representation tree for the current block and */
/* compute the eigenvectors */
L40:
if (idone < im) {
/* This is a crude protection against infinitely deep trees */
if (ndepth > *m) {
*info = -2;
return 0;
}
/* breadth first processing of the current level of the representation */
/* tree: OLDNCL = number of clusters on current level */
oldncl = nclus;
/* reset NCLUS to count the number of child clusters */
nclus = 0;
parity = 1 - parity;
if (parity == 0) {
oldcls = iindc1;
newcls = iindc2;
} else {
oldcls = iindc2;
newcls = iindc1;
}
/* Process the clusters on the current level */
i__2 = oldncl;
for (i__ = 1; i__ <= i__2; ++i__) {
j = oldcls + (i__ << 1);
/* OLDFST, OLDLST = first, last index of current cluster. */
/* cluster indices start with 1 and are relative */
/* to WBEGIN when accessing W, WGAP, WERR, Z */
oldfst = iwork[j - 1];
oldlst = iwork[j];
if (ndepth > 0) {
/* Retrieve relatively robust representation (RRR) of cluster */
/* that has been computed at the previous level */
/* The RRR is stored in Z and overwritten once the eigenvectors */
/* have been computed or when the cluster is refined */
if (*dol == 1 && *dou == *m) {
/* Get representation from location of the leftmost evalue */
/* of the cluster */
j = wbegin + oldfst - 1;
} else {
if (wbegin + oldfst - 1 < *dol) {
/* Get representation from the left end of Z array */
j = *dol - 1;
} else if (wbegin + oldfst - 1 > *dou) {
/* Get representation from the right end of Z array */
j = *dou;
} else {
j = wbegin + oldfst - 1;
}
}
template_blas_copy(&in, &z__[ibegin + j * z_dim1], &c__1, &d__[ibegin]
, &c__1);
i__3 = in - 1;
template_blas_copy(&i__3, &z__[ibegin + (j + 1) * z_dim1], &c__1, &l[
ibegin], &c__1);
sigma = z__[iend + (j + 1) * z_dim1];
/* Set the corresponding entries in Z to zero */
template_lapack_laset("Full", &in, &c__2, &c_b5, &c_b5, &z__[ibegin + j
* z_dim1], ldz);
}
/* Compute DL and DLL of current RRR */
i__3 = iend - 1;
for (j = ibegin; j <= i__3; ++j) {
tmp = d__[j] * l[j];
work[indld - 1 + j] = tmp;
work[indlld - 1 + j] = tmp * l[j];
/* L50: */
}
if (ndepth > 0) {
/* P and Q are index of the first and last eigenvalue to compute */
/* within the current block */
p = indexw[wbegin - 1 + oldfst];
q = indexw[wbegin - 1 + oldlst];
/* Offset for the arrays WORK, WGAP and WERR, i.e., th P-OFFSET */
/* thru' Q-OFFSET elements of these arrays are to be used. */
/* OFFSET = P-OLDFST */
offset = indexw[wbegin] - 1;
/* perform limited bisection (if necessary) to get approximate */
/* eigenvalues to the precision needed. */
template_lapack_larrb(&in, &d__[ibegin], &work[indlld + ibegin - 1], &p,
&q, rtol1, rtol2, &offset, &work[wbegin], &wgap[
wbegin], &werr[wbegin], &work[indwrk], &iwork[
iindwk], pivmin, &spdiam, &in, &iinfo);
if (iinfo != 0) {
*info = -1;
return 0;
}
/* We also recompute the extremal gaps. W holds all eigenvalues */
/* of the unshifted matrix and must be used for computation */
/* of WGAP, the entries of WORK might stem from RRRs with */
/* different shifts. The gaps from WBEGIN-1+OLDFST to */
/* WBEGIN-1+OLDLST are correctly computed in DLARRB. */
/* However, we only allow the gaps to become greater since */
/* this is what should happen when we decrease WERR */
if (oldfst > 1) {
/* Computing MAX */
d__1 = wgap[wbegin + oldfst - 2], d__2 = w[wbegin +
oldfst - 1] - werr[wbegin + oldfst - 1] - w[
wbegin + oldfst - 2] - werr[wbegin + oldfst -
2];
wgap[wbegin + oldfst - 2] = maxMACRO(d__1,d__2);
}
if (wbegin + oldlst - 1 < wend) {
/* Computing MAX */
d__1 = wgap[wbegin + oldlst - 1], d__2 = w[wbegin +
oldlst] - werr[wbegin + oldlst] - w[wbegin +
oldlst - 1] - werr[wbegin + oldlst - 1];
wgap[wbegin + oldlst - 1] = maxMACRO(d__1,d__2);
}
/* Each time the eigenvalues in WORK get refined, we store */
/* the newly found approximation with all shifts applied in W */
i__3 = oldlst;
for (j = oldfst; j <= i__3; ++j) {
w[wbegin + j - 1] = work[wbegin + j - 1] + sigma;
/* L53: */
}
}
/* Process the current node. */
newfst = oldfst;
i__3 = oldlst;
for (j = oldfst; j <= i__3; ++j) {
if (j == oldlst) {
/* we are at the right end of the cluster, this is also the */
/* boundary of the child cluster */
newlst = j;
} else if (wgap[wbegin + j - 1] >= *minrgp * (d__1 = work[
wbegin + j - 1], absMACRO(d__1))) {
/* the right relative gap is big enough, the child cluster */
/* (NEWFST,..,NEWLST) is well separated from the following */
newlst = j;
} else {
/* inside a child cluster, the relative gap is not */
/* big enough. */
goto L140;
}
/* Compute size of child cluster found */
newsiz = newlst - newfst + 1;
/* NEWFTT is the place in Z where the new RRR or the computed */
/* eigenvector is to be stored */
if (*dol == 1 && *dou == *m) {
/* Store representation at location of the leftmost evalue */
/* of the cluster */
newftt = wbegin + newfst - 1;
} else {
if (wbegin + newfst - 1 < *dol) {
/* Store representation at the left end of Z array */
newftt = *dol - 1;
} else if (wbegin + newfst - 1 > *dou) {
/* Store representation at the right end of Z array */
newftt = *dou;
} else {
newftt = wbegin + newfst - 1;
}
}
if (newsiz > 1) {
/* Current child is not a singleton but a cluster. */
/* Compute and store new representation of child. */
/* Compute left and right cluster gap. */
/* LGAP and RGAP are not computed from WORK because */
/* the eigenvalue approximations may stem from RRRs */
/* different shifts. However, W hold all eigenvalues */
/* of the unshifted matrix. Still, the entries in WGAP */
/* have to be computed from WORK since the entries */
/* in W might be of the same order so that gaps are not */
/* exhibited correctly for very close eigenvalues. */
if (newfst == 1) {
/* Computing MAX */
d__1 = 0., d__2 = w[wbegin] - werr[wbegin] - *vl;
lgap = maxMACRO(d__1,d__2);
} else {
lgap = wgap[wbegin + newfst - 2];
}
rgap = wgap[wbegin + newlst - 1];
/* Compute left- and rightmost eigenvalue of child */
/* to high precision in order to shift as close */
/* as possible and obtain as large relative gaps */
/* as possible */
for (k = 1; k <= 2; ++k) {
if (k == 1) {
p = indexw[wbegin - 1 + newfst];
} else {
p = indexw[wbegin - 1 + newlst];
}
offset = indexw[wbegin] - 1;
template_lapack_larrb(&in, &d__[ibegin], &work[indlld + ibegin
- 1], &p, &p, &rqtol, &rqtol, &offset, &
work[wbegin], &wgap[wbegin], &werr[wbegin]
, &work[indwrk], &iwork[iindwk], pivmin, &
spdiam, &in, &iinfo);
/* L55: */
}
if (wbegin + newlst - 1 < *dol || wbegin + newfst - 1
> *dou) {
/* if the cluster contains no desired eigenvalues */
/* skip the computation of that branch of the rep. tree */
/* We could skip before the refinement of the extremal */
/* eigenvalues of the child, but then the representation */
/* tree could be different from the one when nothing is */
/* skipped. For this reason we skip at this place. */
idone = idone + newlst - newfst + 1;
goto L139;
}
/* Compute RRR of child cluster. */
/* Note that the new RRR is stored in Z */
/* DLARRF needs LWORK = 2*N */
template_lapack_larrf(&in, &d__[ibegin], &l[ibegin], &work[indld +
ibegin - 1], &newfst, &newlst, &work[wbegin],
&wgap[wbegin], &werr[wbegin], &spdiam, &lgap,
&rgap, pivmin, &tau, &z__[ibegin + newftt *
z_dim1], &z__[ibegin + (newftt + 1) * z_dim1],
&work[indwrk], &iinfo);
if (iinfo == 0) {
/* a new RRR for the cluster was found by DLARRF */
/* update shift and store it */
ssigma = sigma + tau;
z__[iend + (newftt + 1) * z_dim1] = ssigma;
/* WORK() are the midpoints and WERR() the semi-width */
/* Note that the entries in W are unchanged. */
i__4 = newlst;
for (k = newfst; k <= i__4; ++k) {
fudge = eps * 3. * (d__1 = work[wbegin + k -
1], absMACRO(d__1));
work[wbegin + k - 1] -= tau;
fudge += eps * 4. * (d__1 = work[wbegin + k -
1], absMACRO(d__1));
/* Fudge errors */
werr[wbegin + k - 1] += fudge;
/* Gaps are not fudged. Provided that WERR is small */
/* when eigenvalues are close, a zero gap indicates */
/* that a new representation is needed for resolving */
/* the cluster. A fudge could lead to a wrong decision */
/* of judging eigenvalues 'separated' which in */
/* reality are not. This could have a negative impact */
/* on the orthogonality of the computed eigenvectors. */
/* L116: */
}
++nclus;
k = newcls + (nclus << 1);
iwork[k - 1] = newfst;
iwork[k] = newlst;
} else {
*info = -2;
return 0;
}
} else {
/* Compute eigenvector of singleton */
iter = 0;
tol = template_blas_log((Treal) in) * 4. * eps;
k = newfst;
windex = wbegin + k - 1;
/* Computing MAX */
i__4 = windex - 1;
windmn = maxMACRO(i__4,1);
/* Computing MIN */
i__4 = windex + 1;
windpl = minMACRO(i__4,*m);
lambda = work[windex];
++done;
/* Check if eigenvector computation is to be skipped */
if (windex < *dol || windex > *dou) {
eskip = TRUE_;
goto L125;
} else {
eskip = FALSE_;
}
left = work[windex] - werr[windex];
right = work[windex] + werr[windex];
indeig = indexw[windex];
/* Note that since we compute the eigenpairs for a child, */
/* all eigenvalue approximations are w.r.t the same shift. */
/* In this case, the entries in WORK should be used for */
/* computing the gaps since they exhibit even very small */
/* differences in the eigenvalues, as opposed to the */
/* entries in W which might "look" the same. */
if (k == 1) {
/* In the case RANGE='I' and with not much initial */
/* accuracy in LAMBDA and VL, the formula */
/* LGAP = MAX( ZERO, (SIGMA - VL) + LAMBDA ) */
/* can lead to an overestimation of the left gap and */
/* thus to inadequately early RQI 'convergence'. */
/* Prevent this by forcing a small left gap. */
/* Computing MAX */
d__1 = absMACRO(left), d__2 = absMACRO(right);
lgap = eps * maxMACRO(d__1,d__2);
} else {
lgap = wgap[windmn];
}
if (k == im) {
/* In the case RANGE='I' and with not much initial */
/* accuracy in LAMBDA and VU, the formula */
/* can lead to an overestimation of the right gap and */
/* thus to inadequately early RQI 'convergence'. */
/* Prevent this by forcing a small right gap. */
/* Computing MAX */
d__1 = absMACRO(left), d__2 = absMACRO(right);
rgap = eps * maxMACRO(d__1,d__2);
} else {
rgap = wgap[windex];
}
gap = minMACRO(lgap,rgap);
if (k == 1 || k == im) {
/* The eigenvector support can become wrong */
/* because significant entries could be cut off due to a */
/* large GAPTOL parameter in LAR1V. Prevent this. */
gaptol = 0.;
} else {
gaptol = gap * eps;
}
isupmn = in;
isupmx = 1;
/* Update WGAP so that it holds the minimum gap */
/* to the left or the right. This is crucial in the */
/* case where bisection is used to ensure that the */
/* eigenvalue is refined up to the required precision. */
/* The correct value is restored afterwards. */
savgap = wgap[windex];
wgap[windex] = gap;
/* We want to use the Rayleigh Quotient Correction */
/* as often as possible since it converges quadratically */
/* when we are close enough to the desired eigenvalue. */
/* However, the Rayleigh Quotient can have the wrong sign */
/* and lead us away from the desired eigenvalue. In this */
/* case, the best we can do is to use bisection. */
usedbs = FALSE_;
usedrq = FALSE_;
/* Bisection is initially turned off unless it is forced */
needbs = ! tryrqc;
L120:
/* Check if bisection should be used to refine eigenvalue */
if (needbs) {
/* Take the bisection as new iterate */
usedbs = TRUE_;
itmp1 = iwork[iindr + windex];
offset = indexw[wbegin] - 1;
d__1 = eps * 2.;
template_lapack_larrb(&in, &d__[ibegin], &work[indlld + ibegin
- 1], &indeig, &indeig, &c_b5, &d__1, &
offset, &work[wbegin], &wgap[wbegin], &
werr[wbegin], &work[indwrk], &iwork[
iindwk], pivmin, &spdiam, &itmp1, &iinfo);
if (iinfo != 0) {
*info = -3;
return 0;
}
lambda = work[windex];
/* Reset twist index from inaccurate LAMBDA to */
/* force computation of true MINGMA */
iwork[iindr + windex] = 0;
}
/* Given LAMBDA, compute the eigenvector. */
L__1 = ! usedbs;
template_lapack_lar1v(&in, &c__1, &in, &lambda, &d__[ibegin], &l[
ibegin], &work[indld + ibegin - 1], &work[
indlld + ibegin - 1], pivmin, &gaptol, &z__[
ibegin + windex * z_dim1], &L__1, &negcnt, &
ztz, &mingma, &iwork[iindr + windex], &isuppz[
(windex << 1) - 1], &nrminv, &resid, &rqcorr,
&work[indwrk]);
if (iter == 0) {
bstres = resid;
bstw = lambda;
} else if (resid < bstres) {
bstres = resid;
bstw = lambda;
}
/* Computing MIN */
i__4 = isupmn, i__5 = isuppz[(windex << 1) - 1];
isupmn = minMACRO(i__4,i__5);
/* Computing MAX */
i__4 = isupmx, i__5 = isuppz[windex * 2];
isupmx = maxMACRO(i__4,i__5);
++iter;
/* sin alpha <= |resid|/gap */
/* Note that both the residual and the gap are */
/* proportional to the matrix, so ||T|| doesn't play */
/* a role in the quotient */
/* Convergence test for Rayleigh-Quotient iteration */
/* (omitted when Bisection has been used) */
if (resid > tol * gap && absMACRO(rqcorr) > rqtol * absMACRO(
lambda) && ! usedbs) {
/* We need to check that the RQCORR update doesn't */
/* move the eigenvalue away from the desired one and */
/* towards a neighbor. -> protection with bisection */
if (indeig <= negcnt) {
/* The wanted eigenvalue lies to the left */
sgndef = -1.;
} else {
/* The wanted eigenvalue lies to the right */
sgndef = 1.;
}
/* We only use the RQCORR if it improves the */
/* the iterate reasonably. */
if (rqcorr * sgndef >= 0. && lambda + rqcorr <=
right && lambda + rqcorr >= left) {
usedrq = TRUE_;
/* Store new midpoint of bisection interval in WORK */
if (sgndef == 1.) {
/* The current LAMBDA is on the left of the true */
/* eigenvalue */
left = lambda;
/* We prefer to assume that the error estimate */
/* is correct. We could make the interval not */
/* as a bracket but to be modified if the RQCORR */
/* chooses to. In this case, the RIGHT side should */
/* be modified as follows: */
/* RIGHT = MAX(RIGHT, LAMBDA + RQCORR) */
} else {
/* The current LAMBDA is on the right of the true */
/* eigenvalue */
right = lambda;
/* See comment about assuming the error estimate is */
/* correct above. */
/* LEFT = MIN(LEFT, LAMBDA + RQCORR) */
}
work[windex] = (right + left) * .5;
/* Take RQCORR since it has the correct sign and */
/* improves the iterate reasonably */
lambda += rqcorr;
/* Update width of error interval */
werr[windex] = (right - left) * .5;
} else {
needbs = TRUE_;
}
if (right - left < rqtol * absMACRO(lambda)) {
/* The eigenvalue is computed to bisection accuracy */
/* compute eigenvector and stop */
usedbs = TRUE_;
goto L120;
} else if (iter < 10) {
goto L120;
} else if (iter == 10) {
needbs = TRUE_;
goto L120;
} else {
*info = 5;
return 0;
}
} else {
stp2ii = FALSE_;
if (usedrq && usedbs && bstres <= resid) {
lambda = bstw;
stp2ii = TRUE_;
}
if (stp2ii) {
/* improve error angle by second step */
L__1 = ! usedbs;
template_lapack_lar1v(&in, &c__1, &in, &lambda, &d__[ibegin]
, &l[ibegin], &work[indld + ibegin -
1], &work[indlld + ibegin - 1],
pivmin, &gaptol, &z__[ibegin + windex
* z_dim1], &L__1, &negcnt, &ztz, &
mingma, &iwork[iindr + windex], &
isuppz[(windex << 1) - 1], &nrminv, &
resid, &rqcorr, &work[indwrk]);
}
work[windex] = lambda;
}
/* Compute FP-vector support w.r.t. whole matrix */
isuppz[(windex << 1) - 1] += oldien;
isuppz[windex * 2] += oldien;
zfrom = isuppz[(windex << 1) - 1];
zto = isuppz[windex * 2];
isupmn += oldien;
isupmx += oldien;
/* Ensure vector is ok if support in the RQI has changed */
if (isupmn < zfrom) {
i__4 = zfrom - 1;
for (ii = isupmn; ii <= i__4; ++ii) {
z__[ii + windex * z_dim1] = 0.;
/* L122: */
}
}
if (isupmx > zto) {
i__4 = isupmx;
for (ii = zto + 1; ii <= i__4; ++ii) {
z__[ii + windex * z_dim1] = 0.;
/* L123: */
}
}
i__4 = zto - zfrom + 1;
template_blas_scal(&i__4, &nrminv, &z__[zfrom + windex * z_dim1],
&c__1);
L125:
/* Update W */
w[windex] = lambda + sigma;
/* Recompute the gaps on the left and right */
/* But only allow them to become larger and not */
/* smaller (which can only happen through "bad" */
/* cancellation and doesn't reflect the theory */
/* where the initial gaps are underestimated due */
/* to WERR being too crude.) */
if (! eskip) {
if (k > 1) {
/* Computing MAX */
d__1 = wgap[windmn], d__2 = w[windex] - werr[
windex] - w[windmn] - werr[windmn];
wgap[windmn] = maxMACRO(d__1,d__2);
}
if (windex < wend) {
/* Computing MAX */
d__1 = savgap, d__2 = w[windpl] - werr[windpl]
- w[windex] - werr[windex];
wgap[windex] = maxMACRO(d__1,d__2);
}
}
++idone;
}
/* here ends the code for the current child */
L139:
/* Proceed to any remaining child nodes */
newfst = j + 1;
L140:
;
}
/* L150: */
}
++ndepth;
goto L40;
}
ibegin = iend + 1;
wbegin = wend + 1;
L170:
;
}
return 0;
/* End of DLARRV */
} /* dlarrv_ */
#endif
|