1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/* This file belongs to the template_lapack part of the Ergo source
* code. The source files in the template_lapack directory are modified
* versions of files originally distributed as CLAPACK, see the
* Copyright/license notice in the file template_lapack/COPYING.
*/
#ifndef TEMPLATE_LAPACK_LASCL_HEADER
#define TEMPLATE_LAPACK_LASCL_HEADER
template<class Treal>
int template_lapack_lascl(const char *type__, const integer *kl, const integer *ku,
const Treal *cfrom, const Treal *cto, const integer *m, const integer *n,
Treal *a, const integer *lda, integer *info)
{
/* -- LAPACK auxiliary routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
February 29, 1992
Purpose
=======
DLASCL multiplies the M by N real matrix A by the real scalar
CTO/CFROM. This is done without over/underflow as long as the final
result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that
A may be full, upper triangular, lower triangular, upper Hessenberg,
or banded.
Arguments
=========
TYPE (input) CHARACTER*1
TYPE indices the storage type of the input matrix.
= 'G': A is a full matrix.
= 'L': A is a lower triangular matrix.
= 'U': A is an upper triangular matrix.
= 'H': A is an upper Hessenberg matrix.
= 'B': A is a symmetric band matrix with lower bandwidth KL
and upper bandwidth KU and with the only the lower
half stored.
= 'Q': A is a symmetric band matrix with lower bandwidth KL
and upper bandwidth KU and with the only the upper
half stored.
= 'Z': A is a band matrix with lower bandwidth KL and upper
bandwidth KU.
KL (input) INTEGER
The lower bandwidth of A. Referenced only if TYPE = 'B',
'Q' or 'Z'.
KU (input) INTEGER
The upper bandwidth of A. Referenced only if TYPE = 'B',
'Q' or 'Z'.
CFROM (input) DOUBLE PRECISION
CTO (input) DOUBLE PRECISION
The matrix A is multiplied by CTO/CFROM. A(I,J) is computed
without over/underflow if the final result CTO*A(I,J)/CFROM
can be represented without over/underflow. CFROM must be
nonzero.
M (input) INTEGER
The number of rows of the matrix A. M >= 0.
N (input) INTEGER
The number of columns of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA,M)
The matrix to be multiplied by CTO/CFROM. See TYPE for the
storage type.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,M).
INFO (output) INTEGER
0 - successful exit
<0 - if INFO = -i, the i-th argument had an illegal value.
=====================================================================
Test the input arguments
Parameter adjustments */
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
/* Local variables */
logical done;
Treal ctoc;
integer i__, j;
integer itype, k1, k2, k3, k4;
Treal cfrom1;
Treal cfromc;
Treal bignum, smlnum, mul, cto1;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
/* Function Body */
*info = 0;
if (template_blas_lsame(type__, "G")) {
itype = 0;
} else if (template_blas_lsame(type__, "L")) {
itype = 1;
} else if (template_blas_lsame(type__, "U")) {
itype = 2;
} else if (template_blas_lsame(type__, "H")) {
itype = 3;
} else if (template_blas_lsame(type__, "B")) {
itype = 4;
} else if (template_blas_lsame(type__, "Q")) {
itype = 5;
} else if (template_blas_lsame(type__, "Z")) {
itype = 6;
} else {
itype = -1;
}
if (itype == -1) {
*info = -1;
} else if (*cfrom == 0.) {
*info = -4;
} else if (*m < 0) {
*info = -6;
} else if (*n < 0 || ( itype == 4 && *n != *m ) || ( itype == 5 && *n != *m ) ) {
*info = -7;
} else if (itype <= 3 && *lda < maxMACRO(1,*m)) {
*info = -9;
} else if (itype >= 4) {
/* Computing MAX */
i__1 = *m - 1;
if (*kl < 0 || *kl > maxMACRO(i__1,0)) {
*info = -2;
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = *n - 1;
if (*ku < 0 || *ku > maxMACRO(i__1,0) || ( (itype == 4 || itype == 5) &&
*kl != *ku ) ) {
*info = -3;
} else if ( ( itype == 4 && *lda < *kl + 1 ) || ( itype == 5 && *lda < *
ku + 1 ) || ( itype == 6 && *lda < (*kl << 1) + *ku + 1 ) ) {
*info = -9;
}
}
}
if (*info != 0) {
i__1 = -(*info);
template_blas_erbla("LASCL ", &i__1);
return 0;
}
/* Quick return if possible */
if (*n == 0 || *m == 0) {
return 0;
}
/* Get machine parameters */
smlnum = template_lapack_lamch("S", (Treal)0);
bignum = 1. / smlnum;
cfromc = *cfrom;
ctoc = *cto;
L10:
cfrom1 = cfromc * smlnum;
cto1 = ctoc / bignum;
if (absMACRO(cfrom1) > absMACRO(ctoc) && ctoc != 0.) {
mul = smlnum;
done = FALSE_;
cfromc = cfrom1;
} else if (absMACRO(cto1) > absMACRO(cfromc)) {
mul = bignum;
done = FALSE_;
ctoc = cto1;
} else {
mul = ctoc / cfromc;
done = TRUE_;
}
if (itype == 0) {
/* Full matrix */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
a_ref(i__, j) = a_ref(i__, j) * mul;
/* L20: */
}
/* L30: */
}
} else if (itype == 1) {
/* Lower triangular matrix */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = j; i__ <= i__2; ++i__) {
a_ref(i__, j) = a_ref(i__, j) * mul;
/* L40: */
}
/* L50: */
}
} else if (itype == 2) {
/* Upper triangular matrix */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = minMACRO(j,*m);
for (i__ = 1; i__ <= i__2; ++i__) {
a_ref(i__, j) = a_ref(i__, j) * mul;
/* L60: */
}
/* L70: */
}
} else if (itype == 3) {
/* Upper Hessenberg matrix */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
i__3 = j + 1;
i__2 = minMACRO(i__3,*m);
for (i__ = 1; i__ <= i__2; ++i__) {
a_ref(i__, j) = a_ref(i__, j) * mul;
/* L80: */
}
/* L90: */
}
} else if (itype == 4) {
/* Lower half of a symmetric band matrix */
k3 = *kl + 1;
k4 = *n + 1;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
i__3 = k3, i__4 = k4 - j;
i__2 = minMACRO(i__3,i__4);
for (i__ = 1; i__ <= i__2; ++i__) {
a_ref(i__, j) = a_ref(i__, j) * mul;
/* L100: */
}
/* L110: */
}
} else if (itype == 5) {
/* Upper half of a symmetric band matrix */
k1 = *ku + 2;
k3 = *ku + 1;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
i__2 = k1 - j;
i__3 = k3;
for (i__ = maxMACRO(i__2,1); i__ <= i__3; ++i__) {
a_ref(i__, j) = a_ref(i__, j) * mul;
/* L120: */
}
/* L130: */
}
} else if (itype == 6) {
/* Band matrix */
k1 = *kl + *ku + 2;
k2 = *kl + 1;
k3 = (*kl << 1) + *ku + 1;
k4 = *kl + *ku + 1 + *m;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
i__3 = k1 - j;
/* Computing MIN */
i__4 = k3, i__5 = k4 - j;
i__2 = minMACRO(i__4,i__5);
for (i__ = maxMACRO(i__3,k2); i__ <= i__2; ++i__) {
a_ref(i__, j) = a_ref(i__, j) * mul;
/* L140: */
}
/* L150: */
}
}
if (! done) {
goto L10;
}
return 0;
/* End of DLASCL */
} /* dlascl_ */
#undef a_ref
#endif
|