File: template_lapack_lascl.h

package info (click to toggle)
ergo 3.8.2-1.1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 17,568 kB
  • sloc: cpp: 94,763; ansic: 17,785; sh: 10,701; makefile: 1,403; yacc: 127; lex: 116; awk: 23
file content (349 lines) | stat: -rw-r--r-- 9,179 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */
 
 /* This file belongs to the template_lapack part of the Ergo source 
  * code. The source files in the template_lapack directory are modified
  * versions of files originally distributed as CLAPACK, see the
  * Copyright/license notice in the file template_lapack/COPYING.
  */
 

#ifndef TEMPLATE_LAPACK_LASCL_HEADER
#define TEMPLATE_LAPACK_LASCL_HEADER


template<class Treal>
int template_lapack_lascl(const char *type__, const integer *kl, const integer *ku, 
	const Treal *cfrom, const Treal *cto, const integer *m, const integer *n, 
	Treal *a, const integer *lda, integer *info)
{
/*  -- LAPACK auxiliary routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       February 29, 1992   


    Purpose   
    =======   

    DLASCL multiplies the M by N real matrix A by the real scalar   
    CTO/CFROM.  This is done without over/underflow as long as the final   
    result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that   
    A may be full, upper triangular, lower triangular, upper Hessenberg,   
    or banded.   

    Arguments   
    =========   

    TYPE    (input) CHARACTER*1   
            TYPE indices the storage type of the input matrix.   
            = 'G':  A is a full matrix.   
            = 'L':  A is a lower triangular matrix.   
            = 'U':  A is an upper triangular matrix.   
            = 'H':  A is an upper Hessenberg matrix.   
            = 'B':  A is a symmetric band matrix with lower bandwidth KL   
                    and upper bandwidth KU and with the only the lower   
                    half stored.   
            = 'Q':  A is a symmetric band matrix with lower bandwidth KL   
                    and upper bandwidth KU and with the only the upper   
                    half stored.   
            = 'Z':  A is a band matrix with lower bandwidth KL and upper   
                    bandwidth KU.   

    KL      (input) INTEGER   
            The lower bandwidth of A.  Referenced only if TYPE = 'B',   
            'Q' or 'Z'.   

    KU      (input) INTEGER   
            The upper bandwidth of A.  Referenced only if TYPE = 'B',   
            'Q' or 'Z'.   

    CFROM   (input) DOUBLE PRECISION   
    CTO     (input) DOUBLE PRECISION   
            The matrix A is multiplied by CTO/CFROM. A(I,J) is computed   
            without over/underflow if the final result CTO*A(I,J)/CFROM   
            can be represented without over/underflow.  CFROM must be   
            nonzero.   

    M       (input) INTEGER   
            The number of rows of the matrix A.  M >= 0.   

    N       (input) INTEGER   
            The number of columns of the matrix A.  N >= 0.   

    A       (input/output) DOUBLE PRECISION array, dimension (LDA,M)   
            The matrix to be multiplied by CTO/CFROM.  See TYPE for the   
            storage type.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,M).   

    INFO    (output) INTEGER   
            0  - successful exit   
            <0 - if INFO = -i, the i-th argument had an illegal value.   

    =====================================================================   


       Test the input arguments   

       Parameter adjustments */
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5;
    /* Local variables */
     logical done;
     Treal ctoc;
     integer i__, j;
     integer itype, k1, k2, k3, k4;
     Treal cfrom1;
     Treal cfromc;
     Treal bignum, smlnum, mul, cto1;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]

    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;

    /* Function Body */
    *info = 0;

    if (template_blas_lsame(type__, "G")) {
	itype = 0;
    } else if (template_blas_lsame(type__, "L")) {
	itype = 1;
    } else if (template_blas_lsame(type__, "U")) {
	itype = 2;
    } else if (template_blas_lsame(type__, "H")) {
	itype = 3;
    } else if (template_blas_lsame(type__, "B")) {
	itype = 4;
    } else if (template_blas_lsame(type__, "Q")) {
	itype = 5;
    } else if (template_blas_lsame(type__, "Z")) {
	itype = 6;
    } else {
	itype = -1;
    }

    if (itype == -1) {
	*info = -1;
    } else if (*cfrom == 0.) {
	*info = -4;
    } else if (*m < 0) {
	*info = -6;
    } else if (*n < 0 || ( itype == 4 && *n != *m ) || ( itype == 5 && *n != *m ) ) {
	*info = -7;
    } else if (itype <= 3 && *lda < maxMACRO(1,*m)) {
	*info = -9;
    } else if (itype >= 4) {
/* Computing MAX */
	i__1 = *m - 1;
	if (*kl < 0 || *kl > maxMACRO(i__1,0)) {
	    *info = -2;
	} else /* if(complicated condition) */ {
/* Computing MAX */
	    i__1 = *n - 1;
	    if (*ku < 0 || *ku > maxMACRO(i__1,0) || ( (itype == 4 || itype == 5) && 
						       *kl != *ku ) ) {
		*info = -3;
	    } else if ( ( itype == 4 && *lda < *kl + 1 ) || ( itype == 5 && *lda < *
							      ku + 1 ) || ( itype == 6 && *lda < (*kl << 1) + *ku + 1 ) ) {
		*info = -9;
	    }
	}
    }

    if (*info != 0) {
	i__1 = -(*info);
	template_blas_erbla("LASCL ", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0 || *m == 0) {
	return 0;
    }

/*     Get machine parameters */

    smlnum = template_lapack_lamch("S", (Treal)0);
    bignum = 1. / smlnum;

    cfromc = *cfrom;
    ctoc = *cto;

L10:
    cfrom1 = cfromc * smlnum;
    cto1 = ctoc / bignum;
    if (absMACRO(cfrom1) > absMACRO(ctoc) && ctoc != 0.) {
	mul = smlnum;
	done = FALSE_;
	cfromc = cfrom1;
    } else if (absMACRO(cto1) > absMACRO(cfromc)) {
	mul = bignum;
	done = FALSE_;
	ctoc = cto1;
    } else {
	mul = ctoc / cfromc;
	done = TRUE_;
    }

    if (itype == 0) {

/*        Full matrix */

	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = *m;
	    for (i__ = 1; i__ <= i__2; ++i__) {
		a_ref(i__, j) = a_ref(i__, j) * mul;
/* L20: */
	    }
/* L30: */
	}

    } else if (itype == 1) {

/*        Lower triangular matrix */

	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = *m;
	    for (i__ = j; i__ <= i__2; ++i__) {
		a_ref(i__, j) = a_ref(i__, j) * mul;
/* L40: */
	    }
/* L50: */
	}

    } else if (itype == 2) {

/*        Upper triangular matrix */

	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    i__2 = minMACRO(j,*m);
	    for (i__ = 1; i__ <= i__2; ++i__) {
		a_ref(i__, j) = a_ref(i__, j) * mul;
/* L60: */
	    }
/* L70: */
	}

    } else if (itype == 3) {

/*        Upper Hessenberg matrix */

	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
	    i__3 = j + 1;
	    i__2 = minMACRO(i__3,*m);
	    for (i__ = 1; i__ <= i__2; ++i__) {
		a_ref(i__, j) = a_ref(i__, j) * mul;
/* L80: */
	    }
/* L90: */
	}

    } else if (itype == 4) {

/*        Lower half of a symmetric band matrix */

	k3 = *kl + 1;
	k4 = *n + 1;
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
	    i__3 = k3, i__4 = k4 - j;
	    i__2 = minMACRO(i__3,i__4);
	    for (i__ = 1; i__ <= i__2; ++i__) {
		a_ref(i__, j) = a_ref(i__, j) * mul;
/* L100: */
	    }
/* L110: */
	}

    } else if (itype == 5) {

/*        Upper half of a symmetric band matrix */

	k1 = *ku + 2;
	k3 = *ku + 1;
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	    i__2 = k1 - j;
	    i__3 = k3;
	    for (i__ = maxMACRO(i__2,1); i__ <= i__3; ++i__) {
		a_ref(i__, j) = a_ref(i__, j) * mul;
/* L120: */
	    }
/* L130: */
	}

    } else if (itype == 6) {

/*        Band matrix */

	k1 = *kl + *ku + 2;
	k2 = *kl + 1;
	k3 = (*kl << 1) + *ku + 1;
	k4 = *kl + *ku + 1 + *m;
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
	    i__3 = k1 - j;
/* Computing MIN */
	    i__4 = k3, i__5 = k4 - j;
	    i__2 = minMACRO(i__4,i__5);
	    for (i__ = maxMACRO(i__3,k2); i__ <= i__2; ++i__) {
		a_ref(i__, j) = a_ref(i__, j) * mul;
/* L140: */
	    }
/* L150: */
	}

    }

    if (! done) {
	goto L10;
    }

    return 0;

/*     End of DLASCL */

} /* dlascl_ */

#undef a_ref


#endif