File: template_lapack_lasv2.h

package info (click to toggle)
ergo 3.8.2-1.1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 17,568 kB
  • sloc: cpp: 94,763; ansic: 17,785; sh: 10,701; makefile: 1,403; yacc: 127; lex: 116; awk: 23
file content (287 lines) | stat: -rw-r--r-- 7,858 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */
 
 /* This file belongs to the template_lapack part of the Ergo source 
  * code. The source files in the template_lapack directory are modified
  * versions of files originally distributed as CLAPACK, see the
  * Copyright/license notice in the file template_lapack/COPYING.
  */
 

#ifndef TEMPLATE_LAPACK_LASV2_HEADER
#define TEMPLATE_LAPACK_LASV2_HEADER


template<class Treal>
int template_lapack_lasv2(const Treal *f, const Treal *g, const Treal *h__, 
	Treal *ssmin, Treal *ssmax, Treal *snr, Treal *
	csr, Treal *snl, Treal *csl)
{
/*  -- LAPACK auxiliary routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       October 31, 1992   


    Purpose   
    =======   

    DLASV2 computes the singular value decomposition of a 2-by-2   
    triangular matrix   
       [  F   G  ]   
       [  0   H  ].   
    On return, abs(SSMAX) is the larger singular value, abs(SSMIN) is the   
    smaller singular value, and (CSL,SNL) and (CSR,SNR) are the left and   
    right singular vectors for abs(SSMAX), giving the decomposition   

       [ CSL  SNL ] [  F   G  ] [ CSR -SNR ]  =  [ SSMAX   0   ]   
       [-SNL  CSL ] [  0   H  ] [ SNR  CSR ]     [  0    SSMIN ].   

    Arguments   
    =========   

    F       (input) DOUBLE PRECISION   
            The (1,1) element of the 2-by-2 matrix.   

    G       (input) DOUBLE PRECISION   
            The (1,2) element of the 2-by-2 matrix.   

    H       (input) DOUBLE PRECISION   
            The (2,2) element of the 2-by-2 matrix.   

    SSMIN   (output) DOUBLE PRECISION   
            abs(SSMIN) is the smaller singular value.   

    SSMAX   (output) DOUBLE PRECISION   
            abs(SSMAX) is the larger singular value.   

    SNL     (output) DOUBLE PRECISION   
    CSL     (output) DOUBLE PRECISION   
            The vector (CSL, SNL) is a unit left singular vector for the   
            singular value abs(SSMAX).   

    SNR     (output) DOUBLE PRECISION   
    CSR     (output) DOUBLE PRECISION   
            The vector (CSR, SNR) is a unit right singular vector for the   
            singular value abs(SSMAX).   

    Further Details   
    ===============   

    Any input parameter may be aliased with any output parameter.   

    Barring over/underflow and assuming a guard digit in subtraction, all   
    output quantities are correct to within a few units in the last   
    place (ulps).   

    In IEEE arithmetic, the code works correctly if one matrix element is   
    infinite.   

    Overflow will not occur unless the largest singular value itself   
    overflows or is within a few ulps of overflow. (On machines with   
    partial overflow, like the Cray, overflow may occur if the largest   
    singular value is within a factor of 2 of overflow.)   

    Underflow is harmless if underflow is gradual. Otherwise, results   
    may correspond to a matrix modified by perturbations of size near   
    the underflow threshold.   

   ===================================================================== */
    /* Table of constant values */
     Treal c_b3 = 2.;
     Treal c_b4 = 1.;
    
    /* System generated locals */
    Treal d__1;
    /* Local variables */
     integer pmax;
     Treal temp;
     logical swap;
     Treal a, d__, l, m, r__, s, t, tsign, fa, ga, ha;
     Treal ft, gt, ht, mm;
     logical gasmal;
     Treal tt, clt, crt, slt, srt;

     /* Initialization added by Elias to get rid of compiler warnings. */
     tsign = 0;


    ft = *f;
    fa = absMACRO(ft);
    ht = *h__;
    ha = absMACRO(*h__);

/*     PMAX points to the maximum absolute element of matrix   
         PMAX = 1 if F largest in absolute values   
         PMAX = 2 if G largest in absolute values   
         PMAX = 3 if H largest in absolute values */

    pmax = 1;
    swap = ha > fa;
    if (swap) {
	pmax = 3;
	temp = ft;
	ft = ht;
	ht = temp;
	temp = fa;
	fa = ha;
	ha = temp;

/*        Now FA .ge. HA */

    }
    gt = *g;
    ga = absMACRO(gt);
    if (ga == 0.) {

/*        Diagonal matrix */

	*ssmin = ha;
	*ssmax = fa;
	clt = 1.;
	crt = 1.;
	slt = 0.;
	srt = 0.;
    } else {
	gasmal = TRUE_;
	if (ga > fa) {
	    pmax = 2;
	    if (fa / ga < template_lapack_lamch("EPS", (Treal)0)) {

/*              Case of very large GA */

		gasmal = FALSE_;
		*ssmax = ga;
		if (ha > 1.) {
		    *ssmin = fa / (ga / ha);
		} else {
		    *ssmin = fa / ga * ha;
		}
		clt = 1.;
		slt = ht / gt;
		srt = 1.;
		crt = ft / gt;
	    }
	}
	if (gasmal) {

/*           Normal case */

	    d__ = fa - ha;
	    if (d__ == fa) {

/*              Copes with infinite F or H */

		l = 1.;
	    } else {
		l = d__ / fa;
	    }

/*           Note that 0 .le. L .le. 1 */

	    m = gt / ft;

/*           Note that abs(M) .le. 1/macheps */

	    t = 2. - l;

/*           Note that T .ge. 1 */

	    mm = m * m;
	    tt = t * t;
	    s = template_blas_sqrt(tt + mm);

/*           Note that 1 .le. S .le. 1 + 1/macheps */

	    if (l == 0.) {
		r__ = absMACRO(m);
	    } else {
		r__ = template_blas_sqrt(l * l + mm);
	    }

/*           Note that 0 .le. R .le. 1 + 1/macheps */

	    a = (s + r__) * .5;

/*           Note that 1 .le. A .le. 1 + abs(M) */

	    *ssmin = ha / a;
	    *ssmax = fa * a;
	    if (mm == 0.) {

/*              Note that M is very tiny */

		if (l == 0.) {
		    t = template_lapack_d_sign(&c_b3, &ft) * template_lapack_d_sign(&c_b4, &gt);
		} else {
		    t = gt / template_lapack_d_sign(&d__, &ft) + m / t;
		}
	    } else {
		t = (m / (s + t) + m / (r__ + l)) * (a + 1.);
	    }
	    l = template_blas_sqrt(t * t + 4.);
	    crt = 2. / l;
	    srt = t / l;
	    clt = (crt + srt * m) / a;
	    slt = ht / ft * srt / a;
	}
    }
    if (swap) {
	*csl = srt;
	*snl = crt;
	*csr = slt;
	*snr = clt;
    } else {
	*csl = clt;
	*snl = slt;
	*csr = crt;
	*snr = srt;
    }

/*     Correct signs of SSMAX and SSMIN */

    if (pmax == 1) {
	tsign = template_lapack_d_sign(&c_b4, csr) * template_lapack_d_sign(&c_b4, csl) * template_lapack_d_sign(&c_b4, f);
    }
    if (pmax == 2) {
	tsign = template_lapack_d_sign(&c_b4, snr) * template_lapack_d_sign(&c_b4, csl) * template_lapack_d_sign(&c_b4, g);
    }
    if (pmax == 3) {
	tsign = template_lapack_d_sign(&c_b4, snr) * template_lapack_d_sign(&c_b4, snl) * template_lapack_d_sign(&c_b4, h__);
    }
    *ssmax = template_lapack_d_sign(ssmax, &tsign);
    d__1 = tsign * template_lapack_d_sign(&c_b4, f) * template_lapack_d_sign(&c_b4, h__);
    *ssmin = template_lapack_d_sign(ssmin, &d__1);
    return 0;

/*     End of DLASV2 */

} /* dlasv2_ */

#endif