1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/* This file belongs to the template_lapack part of the Ergo source
* code. The source files in the template_lapack directory are modified
* versions of files originally distributed as CLAPACK, see the
* Copyright/license notice in the file template_lapack/COPYING.
*/
#ifndef TEMPLATE_LAPACK_LASV2_HEADER
#define TEMPLATE_LAPACK_LASV2_HEADER
template<class Treal>
int template_lapack_lasv2(const Treal *f, const Treal *g, const Treal *h__,
Treal *ssmin, Treal *ssmax, Treal *snr, Treal *
csr, Treal *snl, Treal *csl)
{
/* -- LAPACK auxiliary routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
October 31, 1992
Purpose
=======
DLASV2 computes the singular value decomposition of a 2-by-2
triangular matrix
[ F G ]
[ 0 H ].
On return, abs(SSMAX) is the larger singular value, abs(SSMIN) is the
smaller singular value, and (CSL,SNL) and (CSR,SNR) are the left and
right singular vectors for abs(SSMAX), giving the decomposition
[ CSL SNL ] [ F G ] [ CSR -SNR ] = [ SSMAX 0 ]
[-SNL CSL ] [ 0 H ] [ SNR CSR ] [ 0 SSMIN ].
Arguments
=========
F (input) DOUBLE PRECISION
The (1,1) element of the 2-by-2 matrix.
G (input) DOUBLE PRECISION
The (1,2) element of the 2-by-2 matrix.
H (input) DOUBLE PRECISION
The (2,2) element of the 2-by-2 matrix.
SSMIN (output) DOUBLE PRECISION
abs(SSMIN) is the smaller singular value.
SSMAX (output) DOUBLE PRECISION
abs(SSMAX) is the larger singular value.
SNL (output) DOUBLE PRECISION
CSL (output) DOUBLE PRECISION
The vector (CSL, SNL) is a unit left singular vector for the
singular value abs(SSMAX).
SNR (output) DOUBLE PRECISION
CSR (output) DOUBLE PRECISION
The vector (CSR, SNR) is a unit right singular vector for the
singular value abs(SSMAX).
Further Details
===============
Any input parameter may be aliased with any output parameter.
Barring over/underflow and assuming a guard digit in subtraction, all
output quantities are correct to within a few units in the last
place (ulps).
In IEEE arithmetic, the code works correctly if one matrix element is
infinite.
Overflow will not occur unless the largest singular value itself
overflows or is within a few ulps of overflow. (On machines with
partial overflow, like the Cray, overflow may occur if the largest
singular value is within a factor of 2 of overflow.)
Underflow is harmless if underflow is gradual. Otherwise, results
may correspond to a matrix modified by perturbations of size near
the underflow threshold.
===================================================================== */
/* Table of constant values */
Treal c_b3 = 2.;
Treal c_b4 = 1.;
/* System generated locals */
Treal d__1;
/* Local variables */
integer pmax;
Treal temp;
logical swap;
Treal a, d__, l, m, r__, s, t, tsign, fa, ga, ha;
Treal ft, gt, ht, mm;
logical gasmal;
Treal tt, clt, crt, slt, srt;
/* Initialization added by Elias to get rid of compiler warnings. */
tsign = 0;
ft = *f;
fa = absMACRO(ft);
ht = *h__;
ha = absMACRO(*h__);
/* PMAX points to the maximum absolute element of matrix
PMAX = 1 if F largest in absolute values
PMAX = 2 if G largest in absolute values
PMAX = 3 if H largest in absolute values */
pmax = 1;
swap = ha > fa;
if (swap) {
pmax = 3;
temp = ft;
ft = ht;
ht = temp;
temp = fa;
fa = ha;
ha = temp;
/* Now FA .ge. HA */
}
gt = *g;
ga = absMACRO(gt);
if (ga == 0.) {
/* Diagonal matrix */
*ssmin = ha;
*ssmax = fa;
clt = 1.;
crt = 1.;
slt = 0.;
srt = 0.;
} else {
gasmal = TRUE_;
if (ga > fa) {
pmax = 2;
if (fa / ga < template_lapack_lamch("EPS", (Treal)0)) {
/* Case of very large GA */
gasmal = FALSE_;
*ssmax = ga;
if (ha > 1.) {
*ssmin = fa / (ga / ha);
} else {
*ssmin = fa / ga * ha;
}
clt = 1.;
slt = ht / gt;
srt = 1.;
crt = ft / gt;
}
}
if (gasmal) {
/* Normal case */
d__ = fa - ha;
if (d__ == fa) {
/* Copes with infinite F or H */
l = 1.;
} else {
l = d__ / fa;
}
/* Note that 0 .le. L .le. 1 */
m = gt / ft;
/* Note that abs(M) .le. 1/macheps */
t = 2. - l;
/* Note that T .ge. 1 */
mm = m * m;
tt = t * t;
s = template_blas_sqrt(tt + mm);
/* Note that 1 .le. S .le. 1 + 1/macheps */
if (l == 0.) {
r__ = absMACRO(m);
} else {
r__ = template_blas_sqrt(l * l + mm);
}
/* Note that 0 .le. R .le. 1 + 1/macheps */
a = (s + r__) * .5;
/* Note that 1 .le. A .le. 1 + abs(M) */
*ssmin = ha / a;
*ssmax = fa * a;
if (mm == 0.) {
/* Note that M is very tiny */
if (l == 0.) {
t = template_lapack_d_sign(&c_b3, &ft) * template_lapack_d_sign(&c_b4, >);
} else {
t = gt / template_lapack_d_sign(&d__, &ft) + m / t;
}
} else {
t = (m / (s + t) + m / (r__ + l)) * (a + 1.);
}
l = template_blas_sqrt(t * t + 4.);
crt = 2. / l;
srt = t / l;
clt = (crt + srt * m) / a;
slt = ht / ft * srt / a;
}
}
if (swap) {
*csl = srt;
*snl = crt;
*csr = slt;
*snr = clt;
} else {
*csl = clt;
*snl = slt;
*csr = crt;
*snr = srt;
}
/* Correct signs of SSMAX and SSMIN */
if (pmax == 1) {
tsign = template_lapack_d_sign(&c_b4, csr) * template_lapack_d_sign(&c_b4, csl) * template_lapack_d_sign(&c_b4, f);
}
if (pmax == 2) {
tsign = template_lapack_d_sign(&c_b4, snr) * template_lapack_d_sign(&c_b4, csl) * template_lapack_d_sign(&c_b4, g);
}
if (pmax == 3) {
tsign = template_lapack_d_sign(&c_b4, snr) * template_lapack_d_sign(&c_b4, snl) * template_lapack_d_sign(&c_b4, h__);
}
*ssmax = template_lapack_d_sign(ssmax, &tsign);
d__1 = tsign * template_lapack_d_sign(&c_b4, f) * template_lapack_d_sign(&c_b4, h__);
*ssmin = template_lapack_d_sign(ssmin, &d__1);
return 0;
/* End of DLASV2 */
} /* dlasv2_ */
#endif
|