1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/* This file belongs to the template_lapack part of the Ergo source
* code. The source files in the template_lapack directory are modified
* versions of files originally distributed as CLAPACK, see the
* Copyright/license notice in the file template_lapack/COPYING.
*/
#ifndef TEMPLATE_LAPACK_ORM2R_HEADER
#define TEMPLATE_LAPACK_ORM2R_HEADER
template<class Treal>
int template_lapack_orm2r(const char *side, const char *trans, const integer *m, const integer *n,
const integer *k, Treal *a, const integer *lda, const Treal *tau, Treal *
c__, const integer *ldc, Treal *work, integer *info)
{
/* -- LAPACK routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
February 29, 1992
Purpose
=======
DORM2R overwrites the general real m by n matrix C with
Q * C if SIDE = 'L' and TRANS = 'N', or
Q'* C if SIDE = 'L' and TRANS = 'T', or
C * Q if SIDE = 'R' and TRANS = 'N', or
C * Q' if SIDE = 'R' and TRANS = 'T',
where Q is a real orthogonal matrix defined as the product of k
elementary reflectors
Q = H(1) H(2) . . . H(k)
as returned by DGEQRF. Q is of order m if SIDE = 'L' and of order n
if SIDE = 'R'.
Arguments
=========
SIDE (input) CHARACTER*1
= 'L': apply Q or Q' from the Left
= 'R': apply Q or Q' from the Right
TRANS (input) CHARACTER*1
= 'N': apply Q (No transpose)
= 'T': apply Q' (Transpose)
M (input) INTEGER
The number of rows of the matrix C. M >= 0.
N (input) INTEGER
The number of columns of the matrix C. N >= 0.
K (input) INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
A (input) DOUBLE PRECISION array, dimension (LDA,K)
The i-th column must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
DGEQRF in the first k columns of its array argument A.
A is modified by the routine but restored on exit.
LDA (input) INTEGER
The leading dimension of the array A.
If SIDE = 'L', LDA >= max(1,M);
if SIDE = 'R', LDA >= max(1,N).
TAU (input) DOUBLE PRECISION array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by DGEQRF.
C (input/output) DOUBLE PRECISION array, dimension (LDC,N)
On entry, the m by n matrix C.
On exit, C is overwritten by Q*C or Q'*C or C*Q' or C*Q.
LDC (input) INTEGER
The leading dimension of the array C. LDC >= max(1,M).
WORK (workspace) DOUBLE PRECISION array, dimension
(N) if SIDE = 'L',
(M) if SIDE = 'R'
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
=====================================================================
Test the input arguments
Parameter adjustments */
/* Table of constant values */
integer c__1 = 1;
/* System generated locals */
integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2;
/* Local variables */
logical left;
integer i__;
integer i1, i2, i3, ic, jc, mi, ni, nq;
logical notran;
Treal aii;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
#define c___ref(a_1,a_2) c__[(a_2)*c_dim1 + a_1]
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--tau;
c_dim1 = *ldc;
c_offset = 1 + c_dim1 * 1;
c__ -= c_offset;
--work;
/* Function Body */
*info = 0;
left = template_blas_lsame(side, "L");
notran = template_blas_lsame(trans, "N");
/* NQ is the order of Q */
if (left) {
nq = *m;
} else {
nq = *n;
}
if (! left && ! template_blas_lsame(side, "R")) {
*info = -1;
} else if (! notran && ! template_blas_lsame(trans, "T")) {
*info = -2;
} else if (*m < 0) {
*info = -3;
} else if (*n < 0) {
*info = -4;
} else if (*k < 0 || *k > nq) {
*info = -5;
} else if (*lda < maxMACRO(1,nq)) {
*info = -7;
} else if (*ldc < maxMACRO(1,*m)) {
*info = -10;
}
if (*info != 0) {
i__1 = -(*info);
template_blas_erbla("ORM2R ", &i__1);
return 0;
}
/* Quick return if possible */
if (*m == 0 || *n == 0 || *k == 0) {
return 0;
}
if ( ( left && ! notran ) || ( ! left && notran ) ) {
i1 = 1;
i2 = *k;
i3 = 1;
} else {
i1 = *k;
i2 = 1;
i3 = -1;
}
if (left) {
ni = *n;
jc = 1;
} else {
mi = *m;
ic = 1;
}
i__1 = i2;
i__2 = i3;
for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
if (left) {
/* H(i) is applied to C(i:m,1:n) */
mi = *m - i__ + 1;
ic = i__;
} else {
/* H(i) is applied to C(1:m,i:n) */
ni = *n - i__ + 1;
jc = i__;
}
/* Apply H(i) */
aii = a_ref(i__, i__);
a_ref(i__, i__) = 1.;
template_lapack_larf(side, &mi, &ni, &a_ref(i__, i__), &c__1, &tau[i__], &c___ref(
ic, jc), ldc, &work[1]);
a_ref(i__, i__) = aii;
/* L10: */
}
return 0;
/* End of DORM2R */
} /* dorm2r_ */
#undef c___ref
#undef a_ref
#endif
|