File: template_lapack_potf2.h

package info (click to toggle)
ergo 3.8.2-1.1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 17,568 kB
  • sloc: cpp: 94,763; ansic: 17,785; sh: 10,701; makefile: 1,403; yacc: 127; lex: 116; awk: 23
file content (227 lines) | stat: -rw-r--r-- 6,466 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */
 
 /* This file belongs to the template_lapack part of the Ergo source 
  * code. The source files in the template_lapack directory are modified
  * versions of files originally distributed as CLAPACK, see the
  * Copyright/license notice in the file template_lapack/COPYING.
  */
 

#ifndef TEMPLATE_LAPACK_POTF2_HEADER
#define TEMPLATE_LAPACK_POTF2_HEADER


template<class Treal>
int template_lapack_potf2(const char *uplo, const integer *n, Treal *a, const integer *
	lda, integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       February 29, 1992   


    Purpose   
    =======   

    DPOTF2 computes the Cholesky factorization of a real symmetric   
    positive definite matrix A.   

    The factorization has the form   
       A = U' * U ,  if UPLO = 'U', or   
       A = L  * L',  if UPLO = 'L',   
    where U is an upper triangular matrix and L is lower triangular.   

    This is the unblocked version of the algorithm, calling Level 2 BLAS.   

    Arguments   
    =========   

    UPLO    (input) CHARACTER*1   
            Specifies whether the upper or lower triangular part of the   
            symmetric matrix A is stored.   
            = 'U':  Upper triangular   
            = 'L':  Lower triangular   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)   
            On entry, the symmetric matrix A.  If UPLO = 'U', the leading   
            n by n upper triangular part of A contains the upper   
            triangular part of the matrix A, and the strictly lower   
            triangular part of A is not referenced.  If UPLO = 'L', the   
            leading n by n lower triangular part of A contains the lower   
            triangular part of the matrix A, and the strictly upper   
            triangular part of A is not referenced.   

            On exit, if INFO = 0, the factor U or L from the Cholesky   
            factorization A = U'*U  or A = L*L'.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    INFO    (output) INTEGER   
            = 0: successful exit   
            < 0: if INFO = -k, the k-th argument had an illegal value   
            > 0: if INFO = k, the leading minor of order k is not   
                 positive definite, and the factorization could not be   
                 completed.   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
     integer c__1 = 1;
     Treal c_b10 = -1.;
     Treal c_b12 = 1.;
    
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2, i__3;
    Treal d__1;
    /* Local variables */
     integer j;
     logical upper;
     Treal ajj;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]


    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;

    /* Function Body */
    *info = 0;
    upper = template_blas_lsame(uplo, "U");
    if (! upper && ! template_blas_lsame(uplo, "L")) {
	*info = -1;
    } else if (*n < 0) {
	*info = -2;
    } else if (*lda < maxMACRO(1,*n)) {
	*info = -4;
    }
    if (*info != 0) {
	i__1 = -(*info);
	template_blas_erbla("POTF2 ", &i__1);
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	return 0;
    }

    if (upper) {

/*        Compute the Cholesky factorization A = U'*U. */

	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {

/*           Compute U(J,J) and test for non-positive-definiteness. */

	    i__2 = j - 1;
	    ajj = a_ref(j, j) - template_blas_dot(&i__2, &a_ref(1, j), &c__1, &a_ref(1, j)
		    , &c__1);
	    if (ajj <= 0.) {
		a_ref(j, j) = ajj;
		goto L30;
	    }
	    ajj = template_blas_sqrt(ajj);
	    a_ref(j, j) = ajj;

/*           Compute elements J+1:N of row J. */

	    if (j < *n) {
		i__2 = j - 1;
		i__3 = *n - j;
		template_blas_gemv("Transpose", &i__2, &i__3, &c_b10, &a_ref(1, j + 1), 
			lda, &a_ref(1, j), &c__1, &c_b12, &a_ref(j, j + 1), 
			lda);
		i__2 = *n - j;
		d__1 = 1. / ajj;
		template_blas_scal(&i__2, &d__1, &a_ref(j, j + 1), lda);
	    }
/* L10: */
	}
    } else {

/*        Compute the Cholesky factorization A = L*L'. */

	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {

/*           Compute L(J,J) and test for non-positive-definiteness. */

	    i__2 = j - 1;
	    ajj = a_ref(j, j) - template_blas_dot(&i__2, &a_ref(j, 1), lda, &a_ref(j, 1), 
		    lda);
	    if (ajj <= 0.) {
		a_ref(j, j) = ajj;
		goto L30;
	    }
	    ajj = template_blas_sqrt(ajj);
	    a_ref(j, j) = ajj;

/*           Compute elements J+1:N of column J. */

	    if (j < *n) {
		i__2 = *n - j;
		i__3 = j - 1;
		template_blas_gemv("No transpose", &i__2, &i__3, &c_b10, &a_ref(j + 1, 1),
			 lda, &a_ref(j, 1), lda, &c_b12, &a_ref(j + 1, j), &
			c__1);
		i__2 = *n - j;
		d__1 = 1. / ajj;
		template_blas_scal(&i__2, &d__1, &a_ref(j + 1, j), &c__1);
	    }
/* L20: */
	}
    }
    goto L40;

L30:
    *info = j;

L40:
    return 0;

/*     End of DPOTF2 */

} /* dpotf2_ */

#undef a_ref


#endif