1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/* This file belongs to the template_lapack part of the Ergo source
* code. The source files in the template_lapack directory are modified
* versions of files originally distributed as CLAPACK, see the
* Copyright/license notice in the file template_lapack/COPYING.
*/
#ifndef TEMPLATE_LAPACK_PPTRF_HEADER
#define TEMPLATE_LAPACK_PPTRF_HEADER
#include "template_lapack_common.h"
template<class Treal>
int template_lapack_pptrf(const char *uplo, const integer *n, Treal *ap, integer *
info)
{
/* -- LAPACK routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
March 31, 1993
Purpose
=======
DPPTRF computes the Cholesky factorization of a real symmetric
positive definite matrix A stored in packed format.
The factorization has the form
A = U**T * U, if UPLO = 'U', or
A = L * L**T, if UPLO = 'L',
where U is an upper triangular matrix and L is lower triangular.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangle of the symmetric matrix
A, packed columnwise in a linear array. The j-th column of A
is stored in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
On exit, if INFO = 0, the triangular factor U or L from the
Cholesky factorization A = U**T*U or A = L*L**T, in the same
storage format as A.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the leading minor of order i is not
positive definite, and the factorization could not be
completed.
Further Details
======= =======
The packed storage scheme is illustrated by the following example
when N = 4, UPLO = 'U':
Two-dimensional storage of the symmetric matrix A:
a11 a12 a13 a14
a22 a23 a24
a33 a34 (aij = aji)
a44
Packed storage of the upper triangle of A:
AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]
=====================================================================
Test the input parameters.
Parameter adjustments */
/* Table of constant values */
integer c__1 = 1;
Treal c_b16 = -1.;
/* System generated locals */
integer i__1, i__2;
Treal d__1;
/* Local variables */
integer j;
logical upper;
integer jc, jj;
Treal ajj;
--ap;
/* Function Body */
*info = 0;
upper = template_blas_lsame(uplo, "U");
if (! upper && ! template_blas_lsame(uplo, "L")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
}
if (*info != 0) {
i__1 = -(*info);
template_blas_erbla("DPPTRF", &i__1);
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
if (upper) {
/* Compute the Cholesky factorization A = U'*U. */
jj = 0;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
jc = jj + 1;
jj += j;
/* Compute elements 1:J-1 of column J. */
if (j > 1) {
i__2 = j - 1;
template_blas_tpsv("Upper", "Transpose", "Non-unit", &i__2, &ap[1], &ap[
jc], &c__1);
}
/* Compute U(J,J) and test for non-positive-definiteness. */
i__2 = j - 1;
ajj = ap[jj] - template_blas_dot(&i__2, &ap[jc], &c__1, &ap[jc], &c__1);
if (ajj <= 0.) {
ap[jj] = ajj;
goto L30;
}
ap[jj] = template_blas_sqrt(ajj);
/* L10: */
}
} else {
/* Compute the Cholesky factorization A = L*L'. */
jj = 1;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Compute L(J,J) and test for non-positive-definiteness. */
ajj = ap[jj];
if (ajj <= 0.) {
ap[jj] = ajj;
goto L30;
}
ajj = template_blas_sqrt(ajj);
ap[jj] = ajj;
/* Compute elements J+1:N of column J and update the trailing
submatrix. */
if (j < *n) {
i__2 = *n - j;
d__1 = 1. / ajj;
template_blas_scal(&i__2, &d__1, &ap[jj + 1], &c__1);
i__2 = *n - j;
template_blas_spr("Lower", &i__2, &c_b16, &ap[jj + 1], &c__1, &ap[jj + *n
- j + 1]);
jj = jj + *n - j + 1;
}
/* L20: */
}
}
goto L40;
L30:
*info = j;
L40:
return 0;
/* End of DPPTRF */
} /* dpptrf_ */
#endif
|