File: template_lapack_spgst.h

package info (click to toggle)
ergo 3.8.2-1.1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 17,568 kB
  • sloc: cpp: 94,763; ansic: 17,785; sh: 10,701; makefile: 1,403; yacc: 127; lex: 116; awk: 23
file content (288 lines) | stat: -rw-r--r-- 8,234 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */
 
 /* This file belongs to the template_lapack part of the Ergo source 
  * code. The source files in the template_lapack directory are modified
  * versions of files originally distributed as CLAPACK, see the
  * Copyright/license notice in the file template_lapack/COPYING.
  */
 

#ifndef TEMPLATE_LAPACK_SPGST_HEADER
#define TEMPLATE_LAPACK_SPGST_HEADER

#include "template_lapack_common.h"

template<class Treal>
int template_lapack_spgst(const integer *itype, const char *uplo, const integer *n, 
	Treal *ap, const Treal *bp, integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       March 31, 1993   


    Purpose   
    =======   

    DSPGST reduces a real symmetric-definite generalized eigenproblem   
    to standard form, using packed storage.   

    If ITYPE = 1, the problem is A*x = lambda*B*x,   
    and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)   

    If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or   
    B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.   

    B must have been previously factorized as U**T*U or L*L**T by DPPTRF.   

    Arguments   
    =========   

    ITYPE   (input) INTEGER   
            = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);   
            = 2 or 3: compute U*A*U**T or L**T*A*L.   

    UPLO    (input) CHARACTER   
            = 'U':  Upper triangle of A is stored and B is factored as   
                    U**T*U;   
            = 'L':  Lower triangle of A is stored and B is factored as   
                    L*L**T.   

    N       (input) INTEGER   
            The order of the matrices A and B.  N >= 0.   

    AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)   
            On entry, the upper or lower triangle of the symmetric matrix   
            A, packed columnwise in a linear array.  The j-th column of A   
            is stored in the array AP as follows:   
            if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;   
            if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.   

            On exit, if INFO = 0, the transformed matrix, stored in the   
            same format as A.   

    BP      (input) DOUBLE PRECISION array, dimension (N*(N+1)/2)   
            The triangular factor from the Cholesky factorization of B,   
            stored in the same format as A, as returned by DPPTRF.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
     integer c__1 = 1;
     Treal c_b9 = -1.;
     Treal c_b11 = 1.;
    
    /* System generated locals */
    integer i__1, i__2;
    Treal d__1;
    /* Local variables */
     integer j, k;
     logical upper;
     integer j1, k1;
     integer jj, kk;
     Treal ct;
     Treal ajj;
     integer j1j1;
     Treal akk;
     integer k1k1;
     Treal bjj, bkk;


    --bp;
    --ap;

    /* Function Body */
    *info = 0;
    upper = template_blas_lsame(uplo, "U");
    if (*itype < 1 || *itype > 3) {
	*info = -1;
    } else if (! upper && ! template_blas_lsame(uplo, "L")) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    }
    if (*info != 0) {
	i__1 = -(*info);
	template_blas_erbla("SPGST ", &i__1);
	return 0;
    }

    if (*itype == 1) {
	if (upper) {

/*           Compute inv(U')*A*inv(U)   

             J1 and JJ are the indices of A(1,j) and A(j,j) */

	    jj = 0;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		j1 = jj + 1;
		jj += j;

/*              Compute the j-th column of the upper triangle of A */

		bjj = bp[jj];
		template_blas_tpsv(uplo, "Transpose", "Nonunit", &j, &bp[1], &ap[j1], &
			c__1);
		i__2 = j - 1;
		template_blas_spmv(uplo, &i__2, &c_b9, &ap[1], &bp[j1], &c__1, &c_b11, &
			ap[j1], &c__1);
		i__2 = j - 1;
		d__1 = 1. / bjj;
		template_blas_scal(&i__2, &d__1, &ap[j1], &c__1);
		i__2 = j - 1;
		ap[jj] = (ap[jj] - template_blas_dot(&i__2, &ap[j1], &c__1, &bp[j1], &
			c__1)) / bjj;
/* L10: */
	    }
	} else {

/*           Compute inv(L)*A*inv(L')   

             KK and K1K1 are the indices of A(k,k) and A(k+1,k+1) */

	    kk = 1;
	    i__1 = *n;
	    for (k = 1; k <= i__1; ++k) {
		k1k1 = kk + *n - k + 1;

/*              Update the lower triangle of A(k:n,k:n) */

		akk = ap[kk];
		bkk = bp[kk];
/* Computing 2nd power */
		d__1 = bkk;
		akk /= d__1 * d__1;
		ap[kk] = akk;
		if (k < *n) {
		    i__2 = *n - k;
		    d__1 = 1. / bkk;
		    template_blas_scal(&i__2, &d__1, &ap[kk + 1], &c__1);
		    ct = akk * -.5;
		    i__2 = *n - k;
		    template_blas_axpy(&i__2, &ct, &bp[kk + 1], &c__1, &ap[kk + 1], &c__1)
			    ;
		    i__2 = *n - k;
		    template_blas_spr2(uplo, &i__2, &c_b9, &ap[kk + 1], &c__1, &bp[kk + 1]
			    , &c__1, &ap[k1k1]);
		    i__2 = *n - k;
		    template_blas_axpy(&i__2, &ct, &bp[kk + 1], &c__1, &ap[kk + 1], &c__1)
			    ;
		    i__2 = *n - k;
		    template_blas_tpsv(uplo, "No transpose", "Non-unit", &i__2, &bp[k1k1],
			     &ap[kk + 1], &c__1);
		}
		kk = k1k1;
/* L20: */
	    }
	}
    } else {
	if (upper) {

/*           Compute U*A*U'   

             K1 and KK are the indices of A(1,k) and A(k,k) */

	    kk = 0;
	    i__1 = *n;
	    for (k = 1; k <= i__1; ++k) {
		k1 = kk + 1;
		kk += k;

/*              Update the upper triangle of A(1:k,1:k) */

		akk = ap[kk];
		bkk = bp[kk];
		i__2 = k - 1;
		template_blas_tpmv(uplo, "No transpose", "Non-unit", &i__2, &bp[1], &ap[
			k1], &c__1);
		ct = akk * .5;
		i__2 = k - 1;
		template_blas_axpy(&i__2, &ct, &bp[k1], &c__1, &ap[k1], &c__1);
		i__2 = k - 1;
		template_blas_spr2(uplo, &i__2, &c_b11, &ap[k1], &c__1, &bp[k1], &c__1, &
			ap[1]);
		i__2 = k - 1;
		template_blas_axpy(&i__2, &ct, &bp[k1], &c__1, &ap[k1], &c__1);
		i__2 = k - 1;
		template_blas_scal(&i__2, &bkk, &ap[k1], &c__1);
/* Computing 2nd power */
		d__1 = bkk;
		ap[kk] = akk * (d__1 * d__1);
/* L30: */
	    }
	} else {

/*           Compute L'*A*L   

             JJ and J1J1 are the indices of A(j,j) and A(j+1,j+1) */

	    jj = 1;
	    i__1 = *n;
	    for (j = 1; j <= i__1; ++j) {
		j1j1 = jj + *n - j + 1;

/*              Compute the j-th column of the lower triangle of A */

		ajj = ap[jj];
		bjj = bp[jj];
		i__2 = *n - j;
		ap[jj] = ajj * bjj + template_blas_dot(&i__2, &ap[jj + 1], &c__1, &bp[jj 
			+ 1], &c__1);
		i__2 = *n - j;
		template_blas_scal(&i__2, &bjj, &ap[jj + 1], &c__1);
		i__2 = *n - j;
		template_blas_spmv(uplo, &i__2, &c_b11, &ap[j1j1], &bp[jj + 1], &c__1, &
			c_b11, &ap[jj + 1], &c__1);
		i__2 = *n - j + 1;
		template_blas_tpmv(uplo, "Transpose", "Non-unit", &i__2, &bp[jj], &ap[jj],
			 &c__1);
		jj = j1j1;
/* L40: */
	    }
	}
    }
    return 0;

/*     End of DSPGST */

} /* dspgst_ */

#endif