File: template_lapack_stebz.h

package info (click to toggle)
ergo 3.8.2-1.1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 17,568 kB
  • sloc: cpp: 94,763; ansic: 17,785; sh: 10,701; makefile: 1,403; yacc: 127; lex: 116; awk: 23
file content (773 lines) | stat: -rw-r--r-- 22,086 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */
 
 /* This file belongs to the template_lapack part of the Ergo source 
  * code. The source files in the template_lapack directory are modified
  * versions of files originally distributed as CLAPACK, see the
  * Copyright/license notice in the file template_lapack/COPYING.
  */
 

#ifndef TEMPLATE_LAPACK_STEBZ_HEADER
#define TEMPLATE_LAPACK_STEBZ_HEADER


template<class Treal>
int template_lapack_stebz(const char *range, const char *order, const integer *n, const Treal 
	*vl, const Treal *vu, const integer *il, const integer *iu, const Treal *abstol, 
	const Treal *d__, const Treal *e, integer *m, integer *nsplit, 
	Treal *w, integer *iblock, integer *isplit, Treal *work, 
	integer *iwork, integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    DSTEBZ computes the eigenvalues of a symmetric tridiagonal   
    matrix T.  The user may ask for all eigenvalues, all eigenvalues   
    in the half-open interval (VL, VU], or the IL-th through IU-th   
    eigenvalues.   

    To avoid overflow, the matrix must be scaled so that its   
    largest element is no greater than overflow**(1/2) *   
    underflow**(1/4) in absolute value, and for greatest   
    accuracy, it should not be much smaller than that.   

    See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal   
    Matrix", Report CS41, Computer Science Dept., Stanford   
    University, July 21, 1966.   

    Arguments   
    =========   

    RANGE   (input) CHARACTER   
            = 'A': ("All")   all eigenvalues will be found.   
            = 'V': ("Value") all eigenvalues in the half-open interval   
                             (VL, VU] will be found.   
            = 'I': ("Index") the IL-th through IU-th eigenvalues (of the   
                             entire matrix) will be found.   

    ORDER   (input) CHARACTER   
            = 'B': ("By Block") the eigenvalues will be grouped by   
                                split-off block (see IBLOCK, ISPLIT) and   
                                ordered from smallest to largest within   
                                the block.   
            = 'E': ("Entire matrix")   
                                the eigenvalues for the entire matrix   
                                will be ordered from smallest to   
                                largest.   

    N       (input) INTEGER   
            The order of the tridiagonal matrix T.  N >= 0.   

    VL      (input) DOUBLE PRECISION   
    VU      (input) DOUBLE PRECISION   
            If RANGE='V', the lower and upper bounds of the interval to   
            be searched for eigenvalues.  Eigenvalues less than or equal   
            to VL, or greater than VU, will not be returned.  VL < VU.   
            Not referenced if RANGE = 'A' or 'I'.   

    IL      (input) INTEGER   
    IU      (input) INTEGER   
            If RANGE='I', the indices (in ascending order) of the   
            smallest and largest eigenvalues to be returned.   
            1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.   
            Not referenced if RANGE = 'A' or 'V'.   

    ABSTOL  (input) DOUBLE PRECISION   
            The absolute tolerance for the eigenvalues.  An eigenvalue   
            (or cluster) is considered to be located if it has been   
            determined to lie in an interval whose width is ABSTOL or   
            less.  If ABSTOL is less than or equal to zero, then ULP*|T|   
            will be used, where |T| means the 1-norm of T.   

            Eigenvalues will be computed most accurately when ABSTOL is   
            set to twice the underflow threshold 2*DLAMCH('S'), not zero.   

    D       (input) DOUBLE PRECISION array, dimension (N)   
            The n diagonal elements of the tridiagonal matrix T.   

    E       (input) DOUBLE PRECISION array, dimension (N-1)   
            The (n-1) off-diagonal elements of the tridiagonal matrix T.   

    M       (output) INTEGER   
            The actual number of eigenvalues found. 0 <= M <= N.   
            (See also the description of INFO=2,3.)   

    NSPLIT  (output) INTEGER   
            The number of diagonal blocks in the matrix T.   
            1 <= NSPLIT <= N.   

    W       (output) DOUBLE PRECISION array, dimension (N)   
            On exit, the first M elements of W will contain the   
            eigenvalues.  (DSTEBZ may use the remaining N-M elements as   
            workspace.)   

    IBLOCK  (output) INTEGER array, dimension (N)   
            At each row/column j where E(j) is zero or small, the   
            matrix T is considered to split into a block diagonal   
            matrix.  On exit, if INFO = 0, IBLOCK(i) specifies to which   
            block (from 1 to the number of blocks) the eigenvalue W(i)   
            belongs.  (DSTEBZ may use the remaining N-M elements as   
            workspace.)   

    ISPLIT  (output) INTEGER array, dimension (N)   
            The splitting points, at which T breaks up into submatrices.   
            The first submatrix consists of rows/columns 1 to ISPLIT(1),   
            the second of rows/columns ISPLIT(1)+1 through ISPLIT(2),   
            etc., and the NSPLIT-th consists of rows/columns   
            ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N.   
            (Only the first NSPLIT elements will actually be used, but   
            since the user cannot know a priori what value NSPLIT will   
            have, N words must be reserved for ISPLIT.)   

    WORK    (workspace) DOUBLE PRECISION array, dimension (4*N)   

    IWORK   (workspace) INTEGER array, dimension (3*N)   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  some or all of the eigenvalues failed to converge or   
                  were not computed:   
                  =1 or 3: Bisection failed to converge for some   
                          eigenvalues; these eigenvalues are flagged by a   
                          negative block number.  The effect is that the   
                          eigenvalues may not be as accurate as the   
                          absolute and relative tolerances.  This is   
                          generally caused by unexpectedly inaccurate   
                          arithmetic.   
                  =2 or 3: RANGE='I' only: Not all of the eigenvalues   
                          IL:IU were found.   
                          Effect: M < IU+1-IL   
                          Cause:  non-monotonic arithmetic, causing the   
                                  Sturm sequence to be non-monotonic.   
                          Cure:   recalculate, using RANGE='A', and pick   
                                  out eigenvalues IL:IU.  In some cases,   
                                  increasing the PARAMETER "FUDGE" may   
                                  make things work.   
                  = 4:    RANGE='I', and the Gershgorin interval   
                          initially used was too small.  No eigenvalues   
                          were computed.   
                          Probable cause: your machine has sloppy   
                                          floating-point arithmetic.   
                          Cure: Increase the PARAMETER "FUDGE",   
                                recompile, and try again.   

    Internal Parameters   
    ===================   

    RELFAC  DOUBLE PRECISION, default = 2.0e0   
            The relative tolerance.  An interval (a,b] lies within   
            "relative tolerance" if  b-a < RELFAC*ulp*max(|a|,|b|),   
            where "ulp" is the machine precision (distance from 1 to   
            the next larger floating point number.)   

    FUDGE   DOUBLE PRECISION, default = 2   
            A "fudge factor" to widen the Gershgorin intervals.  Ideally,   
            a value of 1 should work, but on machines with sloppy   
            arithmetic, this needs to be larger.  The default for   
            publicly released versions should be large enough to handle   
            the worst machine around.  Note that this has no effect   
            on accuracy of the solution.   

    =====================================================================   


       Parameter adjustments */
    /* Table of constant values */
     integer c__1 = 1;
     integer c_n1 = -1;
     integer c__3 = 3;
     integer c__2 = 2;
     integer c__0 = 0;
    
    /* System generated locals */
    integer i__1, i__2, i__3;
    Treal d__1, d__2, d__3, d__4, d__5;
    /* Local variables */
     integer iend, ioff, iout, itmp1, j, jdisc;
     integer iinfo;
     Treal atoli;
     integer iwoff;
     Treal bnorm;
     integer itmax;
     Treal wkill, rtoli, tnorm;
     integer ib, jb, ie, je, nb;
     Treal gl;
     integer im, in;
     integer ibegin;
     Treal gu;
     integer iw;
     Treal wl;
     integer irange, idiscl;
     Treal safemn, wu;
     integer idumma[1];
     integer idiscu, iorder;
     logical ncnvrg;
     Treal pivmin;
     logical toofew;
     integer nwl;
     Treal ulp, wlu, wul;
     integer nwu;
     Treal tmp1, tmp2;


    --iwork;
    --work;
    --isplit;
    --iblock;
    --w;
    --e;
    --d__;

    /* Initialization added by Elias to get rid of compiler warnings. */
    wlu = wul = 0;
    /* Function Body */
    *info = 0;

/*     Decode RANGE */

    if (template_blas_lsame(range, "A")) {
	irange = 1;
    } else if (template_blas_lsame(range, "V")) {
	irange = 2;
    } else if (template_blas_lsame(range, "I")) {
	irange = 3;
    } else {
	irange = 0;
    }

/*     Decode ORDER */

    if (template_blas_lsame(order, "B")) {
	iorder = 2;
    } else if (template_blas_lsame(order, "E")) {
	iorder = 1;
    } else {
	iorder = 0;
    }

/*     Check for Errors */

    if (irange <= 0) {
	*info = -1;
    } else if (iorder <= 0) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (irange == 2) {
	if (*vl >= *vu) {
	    *info = -5;
	}
    } else if (irange == 3 && (*il < 1 || *il > maxMACRO(1,*n))) {
	*info = -6;
    } else if (irange == 3 && (*iu < minMACRO(*n,*il) || *iu > *n)) {
	*info = -7;
    }

    if (*info != 0) {
	i__1 = -(*info);
	template_blas_erbla("STEBZ ", &i__1);
	return 0;
    }

/*     Initialize error flags */

    *info = 0;
    ncnvrg = FALSE_;
    toofew = FALSE_;

/*     Quick return if possible */

    *m = 0;
    if (*n == 0) {
	return 0;
    }

/*     Simplifications: */

    if (irange == 3 && *il == 1 && *iu == *n) {
	irange = 1;
    }

/*     Get machine constants   
       NB is the minimum vector length for vector bisection, or 0   
       if only scalar is to be done. */

    safemn = template_lapack_lamch("S", (Treal)0);
    ulp = template_lapack_lamch("P", (Treal)0);
    rtoli = ulp * 2.;
    nb = template_lapack_ilaenv(&c__1, "DSTEBZ", " ", n, &c_n1, &c_n1, &c_n1, (ftnlen)6, (
	    ftnlen)1);
    if (nb <= 1) {
	nb = 0;
    }

/*     Special Case when N=1 */

    if (*n == 1) {
	*nsplit = 1;
	isplit[1] = 1;
	if (irange == 2 && (*vl >= d__[1] || *vu < d__[1])) {
	    *m = 0;
	} else {
	    w[1] = d__[1];
	    iblock[1] = 1;
	    *m = 1;
	}
	return 0;
    }

/*     Compute Splitting Points */

    *nsplit = 1;
    work[*n] = 0.;
    pivmin = 1.;

/* DIR$ NOVECTOR */
    i__1 = *n;
    for (j = 2; j <= i__1; ++j) {
/* Computing 2nd power */
	d__1 = e[j - 1];
	tmp1 = d__1 * d__1;
/* Computing 2nd power */
	d__2 = ulp;
	if ((d__1 = d__[j] * d__[j - 1], absMACRO(d__1)) * (d__2 * d__2) + safemn 
		> tmp1) {
	    isplit[*nsplit] = j - 1;
	    ++(*nsplit);
	    work[j - 1] = 0.;
	} else {
	    work[j - 1] = tmp1;
	    pivmin = maxMACRO(pivmin,tmp1);
	}
/* L10: */
    }
    isplit[*nsplit] = *n;
    pivmin *= safemn;

/*     Compute Interval and ATOLI */

    if (irange == 3) {

/*        RANGE='I': Compute the interval containing eigenvalues   
                     IL through IU.   

          Compute Gershgorin interval for entire (split) matrix   
          and use it as the initial interval */

	gu = d__[1];
	gl = d__[1];
	tmp1 = 0.;

	i__1 = *n - 1;
	for (j = 1; j <= i__1; ++j) {
	    tmp2 = template_blas_sqrt(work[j]);
/* Computing MAX */
	    d__1 = gu, d__2 = d__[j] + tmp1 + tmp2;
	    gu = maxMACRO(d__1,d__2);
/* Computing MIN */
	    d__1 = gl, d__2 = d__[j] - tmp1 - tmp2;
	    gl = minMACRO(d__1,d__2);
	    tmp1 = tmp2;
/* L20: */
	}

/* Computing MAX */
	d__1 = gu, d__2 = d__[*n] + tmp1;
	gu = maxMACRO(d__1,d__2);
/* Computing MIN */
	d__1 = gl, d__2 = d__[*n] - tmp1;
	gl = minMACRO(d__1,d__2);
/* Computing MAX */
	d__1 = absMACRO(gl), d__2 = absMACRO(gu);
	tnorm = maxMACRO(d__1,d__2);
	gl = gl - tnorm * 2. * ulp * *n - pivmin * 4.;
	gu = gu + tnorm * 2. * ulp * *n + pivmin * 2.;

/*        Compute Iteration parameters */

	itmax = (integer) ((template_blas_log(tnorm + pivmin) - template_blas_log(pivmin)) / template_blas_log(2.)) + 2;
	if (*abstol <= 0.) {
	    atoli = ulp * tnorm;
	} else {
	    atoli = *abstol;
	}

	work[*n + 1] = gl;
	work[*n + 2] = gl;
	work[*n + 3] = gu;
	work[*n + 4] = gu;
	work[*n + 5] = gl;
	work[*n + 6] = gu;
	iwork[1] = -1;
	iwork[2] = -1;
	iwork[3] = *n + 1;
	iwork[4] = *n + 1;
	iwork[5] = *il - 1;
	iwork[6] = *iu;

	template_lapack_laebz(&c__3, &itmax, n, &c__2, &c__2, &nb, &atoli, &rtoli, &pivmin, 
		&d__[1], &e[1], &work[1], &iwork[5], &work[*n + 1], &work[*n 
		+ 5], &iout, &iwork[1], &w[1], &iblock[1], &iinfo);

	if (iwork[6] == *iu) {
	    wl = work[*n + 1];
	    wlu = work[*n + 3];
	    nwl = iwork[1];
	    wu = work[*n + 4];
	    wul = work[*n + 2];
	    nwu = iwork[4];
	} else {
	    wl = work[*n + 2];
	    wlu = work[*n + 4];
	    nwl = iwork[2];
	    wu = work[*n + 3];
	    wul = work[*n + 1];
	    nwu = iwork[3];
	}

	if (nwl < 0 || nwl >= *n || nwu < 1 || nwu > *n) {
	    *info = 4;
	    return 0;
	}
    } else {

/*        RANGE='A' or 'V' -- Set ATOLI   

   Computing MAX */
	d__3 = absMACRO(d__[1]) + absMACRO(e[1]), d__4 = (d__1 = d__[*n], absMACRO(d__1)) + (
		d__2 = e[*n - 1], absMACRO(d__2));
	tnorm = maxMACRO(d__3,d__4);

	i__1 = *n - 1;
	for (j = 2; j <= i__1; ++j) {
/* Computing MAX */
	    d__4 = tnorm, d__5 = (d__1 = d__[j], absMACRO(d__1)) + (d__2 = e[j - 1]
		    , absMACRO(d__2)) + (d__3 = e[j], absMACRO(d__3));
	    tnorm = maxMACRO(d__4,d__5);
/* L30: */
	}

	if (*abstol <= 0.) {
	    atoli = ulp * tnorm;
	} else {
	    atoli = *abstol;
	}

	if (irange == 2) {
	    wl = *vl;
	    wu = *vu;
	} else {
	    wl = 0.;
	    wu = 0.;
	}
    }

/*     Find Eigenvalues -- Loop Over Blocks and recompute NWL and NWU.   
       NWL accumulates the number of eigenvalues .le. WL,   
       NWU accumulates the number of eigenvalues .le. WU */

    *m = 0;
    iend = 0;
    *info = 0;
    nwl = 0;
    nwu = 0;

    i__1 = *nsplit;
    for (jb = 1; jb <= i__1; ++jb) {
	ioff = iend;
	ibegin = ioff + 1;
	iend = isplit[jb];
	in = iend - ioff;

	if (in == 1) {

/*           Special Case -- IN=1 */

	    if (irange == 1 || wl >= d__[ibegin] - pivmin) {
		++nwl;
	    }
	    if (irange == 1 || wu >= d__[ibegin] - pivmin) {
		++nwu;
	    }
	    if (irange == 1 || ( wl < d__[ibegin] - pivmin && wu >= d__[ibegin] 
				 - pivmin ) ) {
		++(*m);
		w[*m] = d__[ibegin];
		iblock[*m] = jb;
	    }
	} else {

/*           General Case -- IN > 1   

             Compute Gershgorin Interval   
             and use it as the initial interval */

	    gu = d__[ibegin];
	    gl = d__[ibegin];
	    tmp1 = 0.;

	    i__2 = iend - 1;
	    for (j = ibegin; j <= i__2; ++j) {
		tmp2 = (d__1 = e[j], absMACRO(d__1));
/* Computing MAX */
		d__1 = gu, d__2 = d__[j] + tmp1 + tmp2;
		gu = maxMACRO(d__1,d__2);
/* Computing MIN */
		d__1 = gl, d__2 = d__[j] - tmp1 - tmp2;
		gl = minMACRO(d__1,d__2);
		tmp1 = tmp2;
/* L40: */
	    }

/* Computing MAX */
	    d__1 = gu, d__2 = d__[iend] + tmp1;
	    gu = maxMACRO(d__1,d__2);
/* Computing MIN */
	    d__1 = gl, d__2 = d__[iend] - tmp1;
	    gl = minMACRO(d__1,d__2);
/* Computing MAX */
	    d__1 = absMACRO(gl), d__2 = absMACRO(gu);
	    bnorm = maxMACRO(d__1,d__2);
	    gl = gl - bnorm * 2. * ulp * in - pivmin * 2.;
	    gu = gu + bnorm * 2. * ulp * in + pivmin * 2.;

/*           Compute ATOLI for the current submatrix */

	    if (*abstol <= 0.) {
/* Computing MAX */
		d__1 = absMACRO(gl), d__2 = absMACRO(gu);
		atoli = ulp * maxMACRO(d__1,d__2);
	    } else {
		atoli = *abstol;
	    }

	    if (irange > 1) {
		if (gu < wl) {
		    nwl += in;
		    nwu += in;
		    goto L70;
		}
		gl = maxMACRO(gl,wl);
		gu = minMACRO(gu,wu);
		if (gl >= gu) {
		    goto L70;
		}
	    }

/*           Set Up Initial Interval */

	    work[*n + 1] = gl;
	    work[*n + in + 1] = gu;
	    template_lapack_laebz(&c__1, &c__0, &in, &in, &c__1, &nb, &atoli, &rtoli, &
		    pivmin, &d__[ibegin], &e[ibegin], &work[ibegin], idumma, &
		    work[*n + 1], &work[*n + (in << 1) + 1], &im, &iwork[1], &
		    w[*m + 1], &iblock[*m + 1], &iinfo);

	    nwl += iwork[1];
	    nwu += iwork[in + 1];
	    iwoff = *m - iwork[1];

/*           Compute Eigenvalues */

	    itmax = (integer) ((template_blas_log(gu - gl + pivmin) - template_blas_log(pivmin)) / template_blas_log(2.)
		    ) + 2;
	    template_lapack_laebz(&c__2, &itmax, &in, &in, &c__1, &nb, &atoli, &rtoli, &
		    pivmin, &d__[ibegin], &e[ibegin], &work[ibegin], idumma, &
		    work[*n + 1], &work[*n + (in << 1) + 1], &iout, &iwork[1],
		     &w[*m + 1], &iblock[*m + 1], &iinfo);

/*           Copy Eigenvalues Into W and IBLOCK   
             Use -JB for block number for unconverged eigenvalues. */

	    i__2 = iout;
	    for (j = 1; j <= i__2; ++j) {
		tmp1 = (work[j + *n] + work[j + in + *n]) * .5;

/*              Flag non-convergence. */

		if (j > iout - iinfo) {
		    ncnvrg = TRUE_;
		    ib = -jb;
		} else {
		    ib = jb;
		}
		i__3 = iwork[j + in] + iwoff;
		for (je = iwork[j] + 1 + iwoff; je <= i__3; ++je) {
		    w[je] = tmp1;
		    iblock[je] = ib;
/* L50: */
		}
/* L60: */
	    }

	    *m += im;
	}
L70:
	;
    }

/*     If RANGE='I', then (WL,WU) contains eigenvalues NWL+1,...,NWU   
       If NWL+1 < IL or NWU > IU, discard extra eigenvalues. */

    if (irange == 3) {
	im = 0;
	idiscl = *il - 1 - nwl;
	idiscu = nwu - *iu;

	if (idiscl > 0 || idiscu > 0) {
	    i__1 = *m;
	    for (je = 1; je <= i__1; ++je) {
		if (w[je] <= wlu && idiscl > 0) {
		    --idiscl;
		} else if (w[je] >= wul && idiscu > 0) {
		    --idiscu;
		} else {
		    ++im;
		    w[im] = w[je];
		    iblock[im] = iblock[je];
		}
/* L80: */
	    }
	    *m = im;
	}
	if (idiscl > 0 || idiscu > 0) {

/*           Code to deal with effects of bad arithmetic:   
             Some low eigenvalues to be discarded are not in (WL,WLU],   
             or high eigenvalues to be discarded are not in (WUL,WU]   
             so just kill off the smallest IDISCL/largest IDISCU   
             eigenvalues, by simply finding the smallest/largest   
             eigenvalue(s).   

             (If N(w) is monotone non-decreasing, this should never   
                 happen.) */

	    if (idiscl > 0) {
		wkill = wu;
		i__1 = idiscl;
		for (jdisc = 1; jdisc <= i__1; ++jdisc) {
		    iw = 0;
		    i__2 = *m;
		    for (je = 1; je <= i__2; ++je) {
			if (iblock[je] != 0 && (w[je] < wkill || iw == 0)) {
			    iw = je;
			    wkill = w[je];
			}
/* L90: */
		    }
		    iblock[iw] = 0;
/* L100: */
		}
	    }
	    if (idiscu > 0) {

		wkill = wl;
		i__1 = idiscu;
		for (jdisc = 1; jdisc <= i__1; ++jdisc) {
		    iw = 0;
		    i__2 = *m;
		    for (je = 1; je <= i__2; ++je) {
			if (iblock[je] != 0 && (w[je] > wkill || iw == 0)) {
			    iw = je;
			    wkill = w[je];
			}
/* L110: */
		    }
		    iblock[iw] = 0;
/* L120: */
		}
	    }
	    im = 0;
	    i__1 = *m;
	    for (je = 1; je <= i__1; ++je) {
		if (iblock[je] != 0) {
		    ++im;
		    w[im] = w[je];
		    iblock[im] = iblock[je];
		}
/* L130: */
	    }
	    *m = im;
	}
	if (idiscl < 0 || idiscu < 0) {
	    toofew = TRUE_;
	}
    }

/*     If ORDER='B', do nothing -- the eigenvalues are already sorted   
          by block.   
       If ORDER='E', sort the eigenvalues from smallest to largest */

    if (iorder == 1 && *nsplit > 1) {
	i__1 = *m - 1;
	for (je = 1; je <= i__1; ++je) {
	    ie = 0;
	    tmp1 = w[je];
	    i__2 = *m;
	    for (j = je + 1; j <= i__2; ++j) {
		if (w[j] < tmp1) {
		    ie = j;
		    tmp1 = w[j];
		}
/* L140: */
	    }

	    if (ie != 0) {
		itmp1 = iblock[ie];
		w[ie] = w[je];
		iblock[ie] = iblock[je];
		w[je] = tmp1;
		iblock[je] = itmp1;
	    }
/* L150: */
	}
    }

    *info = 0;
    if (ncnvrg) {
	++(*info);
    }
    if (toofew) {
	*info += 2;
    }
    return 0;

/*     End of DSTEBZ */

} /* dstebz_ */

#endif