1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/* This file belongs to the template_lapack part of the Ergo source
* code. The source files in the template_lapack directory are modified
* versions of files originally distributed as CLAPACK, see the
* Copyright/license notice in the file template_lapack/COPYING.
*/
#ifndef TEMPLATE_LAPACK_STEQR_HEADER
#define TEMPLATE_LAPACK_STEQR_HEADER
template<class Treal>
int template_lapack_steqr(const char *compz, const integer *n, Treal *d__,
Treal *e, Treal *z__, const integer *ldz, Treal *work,
integer *info)
{
/* -- LAPACK routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
September 30, 1994
Purpose
=======
DSTEQR computes all eigenvalues and, optionally, eigenvectors of a
symmetric tridiagonal matrix using the implicit QL or QR method.
The eigenvectors of a full or band symmetric matrix can also be found
if DSYTRD or DSPTRD or DSBTRD has been used to reduce this matrix to
tridiagonal form.
Arguments
=========
COMPZ (input) CHARACTER*1
= 'N': Compute eigenvalues only.
= 'V': Compute eigenvalues and eigenvectors of the original
symmetric matrix. On entry, Z must contain the
orthogonal matrix used to reduce the original matrix
to tridiagonal form.
= 'I': Compute eigenvalues and eigenvectors of the
tridiagonal matrix. Z is initialized to the identity
matrix.
N (input) INTEGER
The order of the matrix. N >= 0.
D (input/output) DOUBLE PRECISION array, dimension (N)
On entry, the diagonal elements of the tridiagonal matrix.
On exit, if INFO = 0, the eigenvalues in ascending order.
E (input/output) DOUBLE PRECISION array, dimension (N-1)
On entry, the (n-1) subdiagonal elements of the tridiagonal
matrix.
On exit, E has been destroyed.
Z (input/output) DOUBLE PRECISION array, dimension (LDZ, N)
On entry, if COMPZ = 'V', then Z contains the orthogonal
matrix used in the reduction to tridiagonal form.
On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
orthonormal eigenvectors of the original symmetric matrix,
and if COMPZ = 'I', Z contains the orthonormal eigenvectors
of the symmetric tridiagonal matrix.
If COMPZ = 'N', then Z is not referenced.
LDZ (input) INTEGER
The leading dimension of the array Z. LDZ >= 1, and if
eigenvectors are desired, then LDZ >= max(1,N).
WORK (workspace) DOUBLE PRECISION array, dimension (max(1,2*N-2))
If COMPZ = 'N', then WORK is not referenced.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: the algorithm has failed to find all the eigenvalues in
a total of 30*N iterations; if INFO = i, then i
elements of E have not converged to zero; on exit, D
and E contain the elements of a symmetric tridiagonal
matrix which is orthogonally similar to the original
matrix.
=====================================================================
Test the input parameters.
Parameter adjustments */
/* Table of constant values */
Treal c_b9 = 0.;
Treal c_b10 = 1.;
integer c__0 = 0;
integer c__1 = 1;
integer c__2 = 2;
/* System generated locals */
integer z_dim1, z_offset, i__1, i__2;
Treal d__1, d__2;
/* Local variables */
integer lend, jtot;
Treal b, c__, f, g;
integer i__, j, k, l, m;
Treal p, r__, s;
Treal anorm;
integer l1;
integer lendm1, lendp1;
integer ii;
integer mm, iscale;
Treal safmin;
Treal safmax;
integer lendsv;
Treal ssfmin;
integer nmaxit, icompz;
Treal ssfmax;
integer lm1, mm1, nm1;
Treal rt1, rt2, eps;
integer lsv;
Treal tst, eps2;
#define z___ref(a_1,a_2) z__[(a_2)*z_dim1 + a_1]
--d__;
--e;
z_dim1 = *ldz;
z_offset = 1 + z_dim1 * 1;
z__ -= z_offset;
--work;
/* Function Body */
*info = 0;
if (template_blas_lsame(compz, "N")) {
icompz = 0;
} else if (template_blas_lsame(compz, "V")) {
icompz = 1;
} else if (template_blas_lsame(compz, "I")) {
icompz = 2;
} else {
icompz = -1;
}
if (icompz < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*ldz < 1 || (icompz > 0 && *ldz < maxMACRO(1,*n) ) ) {
*info = -6;
}
if (*info != 0) {
i__1 = -(*info);
template_blas_erbla("STEQR ", &i__1);
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
if (*n == 1) {
if (icompz == 2) {
z___ref(1, 1) = 1.;
}
return 0;
}
/* Determine the unit roundoff and over/underflow thresholds. */
eps = template_lapack_lamch("E", (Treal)0);
/* Computing 2nd power */
d__1 = eps;
eps2 = d__1 * d__1;
safmin = template_lapack_lamch("S", (Treal)0);
safmax = 1. / safmin;
ssfmax = template_blas_sqrt(safmax) / 3.;
ssfmin = template_blas_sqrt(safmin) / eps2;
/* Compute the eigenvalues and eigenvectors of the tridiagonal
matrix. */
if (icompz == 2) {
template_lapack_laset("Full", n, n, &c_b9, &c_b10, &z__[z_offset], ldz);
}
nmaxit = *n * 30;
jtot = 0;
/* Determine where the matrix splits and choose QL or QR iteration
for each block, according to whether top or bottom diagonal
element is smaller. */
l1 = 1;
nm1 = *n - 1;
L10:
if (l1 > *n) {
goto L160;
}
if (l1 > 1) {
e[l1 - 1] = 0.;
}
if (l1 <= nm1) {
i__1 = nm1;
for (m = l1; m <= i__1; ++m) {
tst = (d__1 = e[m], absMACRO(d__1));
if (tst == 0.) {
goto L30;
}
if (tst <= template_blas_sqrt((d__1 = d__[m], absMACRO(d__1))) * template_blas_sqrt((d__2 = d__[m
+ 1], absMACRO(d__2))) * eps) {
e[m] = 0.;
goto L30;
}
/* L20: */
}
}
m = *n;
L30:
l = l1;
lsv = l;
lend = m;
lendsv = lend;
l1 = m + 1;
if (lend == l) {
goto L10;
}
/* Scale submatrix in rows and columns L to LEND */
i__1 = lend - l + 1;
anorm = template_lapack_lanst("I", &i__1, &d__[l], &e[l]);
iscale = 0;
if (anorm == 0.) {
goto L10;
}
if (anorm > ssfmax) {
iscale = 1;
i__1 = lend - l + 1;
template_lapack_lascl("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &d__[l], n,
info);
i__1 = lend - l;
template_lapack_lascl("G", &c__0, &c__0, &anorm, &ssfmax, &i__1, &c__1, &e[l], n,
info);
} else if (anorm < ssfmin) {
iscale = 2;
i__1 = lend - l + 1;
template_lapack_lascl("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &d__[l], n,
info);
i__1 = lend - l;
template_lapack_lascl("G", &c__0, &c__0, &anorm, &ssfmin, &i__1, &c__1, &e[l], n,
info);
}
/* Choose between QL and QR iteration */
if ((d__1 = d__[lend], absMACRO(d__1)) < (d__2 = d__[l], absMACRO(d__2))) {
lend = lsv;
l = lendsv;
}
if (lend > l) {
/* QL Iteration
Look for small subdiagonal element. */
L40:
if (l != lend) {
lendm1 = lend - 1;
i__1 = lendm1;
for (m = l; m <= i__1; ++m) {
/* Computing 2nd power */
d__2 = (d__1 = e[m], absMACRO(d__1));
tst = d__2 * d__2;
if (tst <= eps2 * (d__1 = d__[m], absMACRO(d__1)) * (d__2 = d__[m
+ 1], absMACRO(d__2)) + safmin) {
goto L60;
}
/* L50: */
}
}
m = lend;
L60:
if (m < lend) {
e[m] = 0.;
}
p = d__[l];
if (m == l) {
goto L80;
}
/* If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
to compute its eigensystem. */
if (m == l + 1) {
if (icompz > 0) {
template_lapack_laev2(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2, &c__, &s);
work[l] = c__;
work[*n - 1 + l] = s;
template_lapack_lasr("R", "V", "B", n, &c__2, &work[l], &work[*n - 1 + l], &
z___ref(1, l), ldz);
} else {
template_lapack_lae2(&d__[l], &e[l], &d__[l + 1], &rt1, &rt2);
}
d__[l] = rt1;
d__[l + 1] = rt2;
e[l] = 0.;
l += 2;
if (l <= lend) {
goto L40;
}
goto L140;
}
if (jtot == nmaxit) {
goto L140;
}
++jtot;
/* Form shift. */
g = (d__[l + 1] - p) / (e[l] * 2.);
r__ = template_lapack_lapy2(&g, &c_b10);
g = d__[m] - p + e[l] / (g + template_lapack_d_sign(&r__, &g));
s = 1.;
c__ = 1.;
p = 0.;
/* Inner loop */
mm1 = m - 1;
i__1 = l;
for (i__ = mm1; i__ >= i__1; --i__) {
f = s * e[i__];
b = c__ * e[i__];
template_lapack_lartg(&g, &f, &c__, &s, &r__);
if (i__ != m - 1) {
e[i__ + 1] = r__;
}
g = d__[i__ + 1] - p;
r__ = (d__[i__] - g) * s + c__ * 2. * b;
p = s * r__;
d__[i__ + 1] = g + p;
g = c__ * r__ - b;
/* If eigenvectors are desired, then save rotations. */
if (icompz > 0) {
work[i__] = c__;
work[*n - 1 + i__] = -s;
}
/* L70: */
}
/* If eigenvectors are desired, then apply saved rotations. */
if (icompz > 0) {
mm = m - l + 1;
template_lapack_lasr("R", "V", "B", n, &mm, &work[l], &work[*n - 1 + l], &
z___ref(1, l), ldz);
}
d__[l] -= p;
e[l] = g;
goto L40;
/* Eigenvalue found. */
L80:
d__[l] = p;
++l;
if (l <= lend) {
goto L40;
}
goto L140;
} else {
/* QR Iteration
Look for small superdiagonal element. */
L90:
if (l != lend) {
lendp1 = lend + 1;
i__1 = lendp1;
for (m = l; m >= i__1; --m) {
/* Computing 2nd power */
d__2 = (d__1 = e[m - 1], absMACRO(d__1));
tst = d__2 * d__2;
if (tst <= eps2 * (d__1 = d__[m], absMACRO(d__1)) * (d__2 = d__[m
- 1], absMACRO(d__2)) + safmin) {
goto L110;
}
/* L100: */
}
}
m = lend;
L110:
if (m > lend) {
e[m - 1] = 0.;
}
p = d__[l];
if (m == l) {
goto L130;
}
/* If remaining matrix is 2-by-2, use DLAE2 or SLAEV2
to compute its eigensystem. */
if (m == l - 1) {
if (icompz > 0) {
template_lapack_laev2(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2, &c__, &s)
;
work[m] = c__;
work[*n - 1 + m] = s;
template_lapack_lasr("R", "V", "F", n, &c__2, &work[m], &work[*n - 1 + m], &
z___ref(1, l - 1), ldz);
} else {
template_lapack_lae2(&d__[l - 1], &e[l - 1], &d__[l], &rt1, &rt2);
}
d__[l - 1] = rt1;
d__[l] = rt2;
e[l - 1] = 0.;
l += -2;
if (l >= lend) {
goto L90;
}
goto L140;
}
if (jtot == nmaxit) {
goto L140;
}
++jtot;
/* Form shift. */
g = (d__[l - 1] - p) / (e[l - 1] * 2.);
r__ = template_lapack_lapy2(&g, &c_b10);
g = d__[m] - p + e[l - 1] / (g + template_lapack_d_sign(&r__, &g));
s = 1.;
c__ = 1.;
p = 0.;
/* Inner loop */
lm1 = l - 1;
i__1 = lm1;
for (i__ = m; i__ <= i__1; ++i__) {
f = s * e[i__];
b = c__ * e[i__];
template_lapack_lartg(&g, &f, &c__, &s, &r__);
if (i__ != m) {
e[i__ - 1] = r__;
}
g = d__[i__] - p;
r__ = (d__[i__ + 1] - g) * s + c__ * 2. * b;
p = s * r__;
d__[i__] = g + p;
g = c__ * r__ - b;
/* If eigenvectors are desired, then save rotations. */
if (icompz > 0) {
work[i__] = c__;
work[*n - 1 + i__] = s;
}
/* L120: */
}
/* If eigenvectors are desired, then apply saved rotations. */
if (icompz > 0) {
mm = l - m + 1;
template_lapack_lasr("R", "V", "F", n, &mm, &work[m], &work[*n - 1 + m], &
z___ref(1, m), ldz);
}
d__[l] -= p;
e[lm1] = g;
goto L90;
/* Eigenvalue found. */
L130:
d__[l] = p;
--l;
if (l >= lend) {
goto L90;
}
goto L140;
}
/* Undo scaling if necessary */
L140:
if (iscale == 1) {
i__1 = lendsv - lsv + 1;
template_lapack_lascl("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &d__[lsv],
n, info);
i__1 = lendsv - lsv;
template_lapack_lascl("G", &c__0, &c__0, &ssfmax, &anorm, &i__1, &c__1, &e[lsv], n,
info);
} else if (iscale == 2) {
i__1 = lendsv - lsv + 1;
template_lapack_lascl("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &d__[lsv],
n, info);
i__1 = lendsv - lsv;
template_lapack_lascl("G", &c__0, &c__0, &ssfmin, &anorm, &i__1, &c__1, &e[lsv], n,
info);
}
/* Check for no convergence to an eigenvalue after a total
of N*MAXIT iterations. */
if (jtot < nmaxit) {
goto L10;
}
i__1 = *n - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
if (e[i__] != 0.) {
++(*info);
}
/* L150: */
}
goto L190;
/* Order eigenvalues and eigenvectors. */
L160:
if (icompz == 0) {
/* Use Quick Sort */
template_lapack_lasrt("I", n, &d__[1], info);
} else {
/* Use Selection Sort to minimize swaps of eigenvectors */
i__1 = *n;
for (ii = 2; ii <= i__1; ++ii) {
i__ = ii - 1;
k = i__;
p = d__[i__];
i__2 = *n;
for (j = ii; j <= i__2; ++j) {
if (d__[j] < p) {
k = j;
p = d__[j];
}
/* L170: */
}
if (k != i__) {
d__[k] = d__[i__];
d__[i__] = p;
template_blas_swap(n, &z___ref(1, i__), &c__1, &z___ref(1, k), &c__1);
}
/* L180: */
}
}
L190:
return 0;
/* End of DSTEQR */
} /* dsteqr_ */
#undef z___ref
#endif
|