1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/* This file belongs to the template_lapack part of the Ergo source
* code. The source files in the template_lapack directory are modified
* versions of files originally distributed as CLAPACK, see the
* Copyright/license notice in the file template_lapack/COPYING.
*/
#ifndef TEMPLATE_LAPACK_STEVR_HEADER
#define TEMPLATE_LAPACK_STEVR_HEADER
template<class Treal>
int template_lapack_stevr(const char *jobz, const char *range, const integer *n,
Treal * d__, Treal *e, const Treal *vl,
const Treal *vu, const integer *il,
const integer *iu, const Treal *abstol,
integer *m, Treal *w,
Treal *z__, const integer *ldz, integer *isuppz,
Treal *work,
integer *lwork, integer *iwork, integer *liwork,
integer *info)
{
/* System generated locals */
integer z_dim1, z_offset, i__1, i__2;
Treal d__1, d__2;
/* Builtin functions */
/* Local variables */
integer i__, j, jj;
Treal eps, vll, vuu, tmp1;
integer imax;
Treal rmin, rmax;
logical test;
Treal tnrm;
integer itmp1;
Treal sigma;
char order[1];
integer lwmin;
logical wantz;
logical alleig, indeig;
integer iscale, ieeeok, indibl, indifl;
logical valeig;
Treal safmin;
Treal bignum;
integer indisp;
integer indiwo;
integer liwmin;
logical tryrac;
integer nsplit;
Treal smlnum;
logical lquery;
/* -- LAPACK driver routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DSTEVR computes selected eigenvalues and, optionally, eigenvectors */
/* of a real symmetric tridiagonal matrix T. Eigenvalues and */
/* eigenvectors can be selected by specifying either a range of values */
/* or a range of indices for the desired eigenvalues. */
/* Whenever possible, DSTEVR calls DSTEMR to compute the */
/* eigenspectrum using Relatively Robust Representations. DSTEMR */
/* computes eigenvalues by the dqds algorithm, while orthogonal */
/* eigenvectors are computed from various "good" L D L^T representations */
/* (also known as Relatively Robust Representations). Gram-Schmidt */
/* orthogonalization is avoided as far as possible. More specifically, */
/* the various steps of the algorithm are as follows. For the i-th */
/* unreduced block of T, */
/* (a) Compute T - sigma_i = L_i D_i L_i^T, such that L_i D_i L_i^T */
/* is a relatively robust representation, */
/* (b) Compute the eigenvalues, lambda_j, of L_i D_i L_i^T to high */
/* relative accuracy by the dqds algorithm, */
/* (c) If there is a cluster of close eigenvalues, "choose" sigma_i */
/* close to the cluster, and go to step (a), */
/* (d) Given the approximate eigenvalue lambda_j of L_i D_i L_i^T, */
/* compute the corresponding eigenvector by forming a */
/* rank-revealing twisted factorization. */
/* The desired accuracy of the output can be specified by the input */
/* parameter ABSTOL. */
/* For more details, see "A new O(n^2) algorithm for the symmetric */
/* tridiagonal eigenvalue/eigenvector problem", by Inderjit Dhillon, */
/* Computer Science Division Technical Report No. UCB//CSD-97-971, */
/* UC Berkeley, May 1997. */
/* Note 1 : DSTEVR calls DSTEMR when the full spectrum is requested */
/* on machines which conform to the ieee-754 floating point standard. */
/* DSTEVR calls DSTEBZ and DSTEIN on non-ieee machines and */
/* when partial spectrum requests are made. */
/* Normal execution of DSTEMR may create NaNs and infinities and */
/* hence may abort due to a floating point exception in environments */
/* which do not handle NaNs and infinities in the ieee standard default */
/* manner. */
/* Arguments */
/* ========= */
/* JOBZ (input) CHARACTER*1 */
/* = 'N': Compute eigenvalues only; */
/* = 'V': Compute eigenvalues and eigenvectors. */
/* RANGE (input) CHARACTER*1 */
/* = 'A': all eigenvalues will be found. */
/* = 'V': all eigenvalues in the half-open interval (VL,VU] */
/* will be found. */
/* = 'I': the IL-th through IU-th eigenvalues will be found. */
/* ********* For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and */
/* ********* DSTEIN are called */
/* N (input) INTEGER */
/* The order of the matrix. N >= 0. */
/* D (input/output) DOUBLE PRECISION array, dimension (N) */
/* On entry, the n diagonal elements of the tridiagonal matrix */
/* A. */
/* On exit, D may be multiplied by a constant factor chosen */
/* to avoid over/underflow in computing the eigenvalues. */
/* E (input/output) DOUBLE PRECISION array, dimension (max(1,N-1)) */
/* On entry, the (n-1) subdiagonal elements of the tridiagonal */
/* matrix A in elements 1 to N-1 of E. */
/* On exit, E may be multiplied by a constant factor chosen */
/* to avoid over/underflow in computing the eigenvalues. */
/* VL (input) DOUBLE PRECISION */
/* VU (input) DOUBLE PRECISION */
/* If RANGE='V', the lower and upper bounds of the interval to */
/* be searched for eigenvalues. VL < VU. */
/* Not referenced if RANGE = 'A' or 'I'. */
/* IL (input) INTEGER */
/* IU (input) INTEGER */
/* If RANGE='I', the indices (in ascending order) of the */
/* smallest and largest eigenvalues to be returned. */
/* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
/* Not referenced if RANGE = 'A' or 'V'. */
/* ABSTOL (input) DOUBLE PRECISION */
/* The absolute error tolerance for the eigenvalues. */
/* An approximate eigenvalue is accepted as converged */
/* when it is determined to lie in an interval [a,b] */
/* of width less than or equal to */
/* ABSTOL + EPS * max( |a|,|b| ) , */
/* where EPS is the machine precision. If ABSTOL is less than */
/* or equal to zero, then EPS*|T| will be used in its place, */
/* where |T| is the 1-norm of the tridiagonal matrix obtained */
/* by reducing A to tridiagonal form. */
/* See "Computing Small Singular Values of Bidiagonal Matrices */
/* with Guaranteed High Relative Accuracy," by Demmel and */
/* Kahan, LAPACK Working Note #3. */
/* If high relative accuracy is important, set ABSTOL to */
/* DLAMCH( 'Safe minimum' ). Doing so will guarantee that */
/* eigenvalues are computed to high relative accuracy when */
/* possible in future releases. The current code does not */
/* make any guarantees about high relative accuracy, but */
/* future releases will. See J. Barlow and J. Demmel, */
/* "Computing Accurate Eigensystems of Scaled Diagonally */
/* Dominant Matrices", LAPACK Working Note #7, for a discussion */
/* of which matrices define their eigenvalues to high relative */
/* accuracy. */
/* M (output) INTEGER */
/* The total number of eigenvalues found. 0 <= M <= N. */
/* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
/* W (output) DOUBLE PRECISION array, dimension (N) */
/* The first M elements contain the selected eigenvalues in */
/* ascending order. */
/* Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) ) */
/* If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
/* contain the orthonormal eigenvectors of the matrix A */
/* corresponding to the selected eigenvalues, with the i-th */
/* column of Z holding the eigenvector associated with W(i). */
/* Note: the user must ensure that at least max(1,M) columns are */
/* supplied in the array Z; if RANGE = 'V', the exact value of M */
/* is not known in advance and an upper bound must be used. */
/* LDZ (input) INTEGER */
/* The leading dimension of the array Z. LDZ >= 1, and if */
/* JOBZ = 'V', LDZ >= max(1,N). */
/* ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) ) */
/* The support of the eigenvectors in Z, i.e., the indices */
/* indicating the nonzero elements in Z. The i-th eigenvector */
/* is nonzero only in elements ISUPPZ( 2*i-1 ) through */
/* ISUPPZ( 2*i ). */
/* ********* Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1 */
/* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
/* On exit, if INFO = 0, WORK(1) returns the optimal (and */
/* minimal) LWORK. */
/* LWORK (input) INTEGER */
/* The dimension of the array WORK. LWORK >= max(1,20*N). */
/* If LWORK = -1, then a workspace query is assumed; the routine */
/* only calculates the optimal sizes of the WORK and IWORK */
/* arrays, returns these values as the first entries of the WORK */
/* and IWORK arrays, and no error message related to LWORK or */
/* LIWORK is issued by XERBLA. */
/* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
/* On exit, if INFO = 0, IWORK(1) returns the optimal (and */
/* minimal) LIWORK. */
/* LIWORK (input) INTEGER */
/* The dimension of the array IWORK. LIWORK >= max(1,10*N). */
/* If LIWORK = -1, then a workspace query is assumed; the */
/* routine only calculates the optimal sizes of the WORK and */
/* IWORK arrays, returns these values as the first entries of */
/* the WORK and IWORK arrays, and no error message related to */
/* LWORK or LIWORK is issued by XERBLA. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* > 0: Internal error */
/* Further Details */
/* =============== */
/* Based on contributions by */
/* Inderjit Dhillon, IBM Almaden, USA */
/* Osni Marques, LBNL/NERSC, USA */
/* Ken Stanley, Computer Science Division, University of */
/* California at Berkeley, USA */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
/* Table of constant values */
integer c__10 = 10;
integer c__1 = 1;
integer c__2 = 2;
integer c__3 = 3;
integer c__4 = 4;
--d__;
--e;
--w;
z_dim1 = *ldz;
z_offset = 1 + z_dim1;
z__ -= z_offset;
--isuppz;
--work;
--iwork;
/* Function Body */
ieeeok = template_lapack_ilaenv(&c__10, "DSTEVR", "N", &c__1, &c__2, &c__3, &c__4, (ftnlen)6, (ftnlen)1);
wantz = template_blas_lsame(jobz, "V");
alleig = template_blas_lsame(range, "A");
valeig = template_blas_lsame(range, "V");
indeig = template_blas_lsame(range, "I");
lquery = *lwork == -1 || *liwork == -1;
/* Computing MAX */
i__1 = 1, i__2 = *n * 20;
lwmin = maxMACRO(i__1,i__2);
/* Computing MAX */
i__1 = 1, i__2 = *n * 10;
liwmin = maxMACRO(i__1,i__2);
*info = 0;
if (! (wantz || template_blas_lsame(jobz, "N"))) {
*info = -1;
} else if (! (alleig || valeig || indeig)) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else {
if (valeig) {
if (*n > 0 && *vu <= *vl) {
*info = -7;
}
} else if (indeig) {
if (*il < 1 || *il > maxMACRO(1,*n)) {
*info = -8;
} else if (*iu < minMACRO(*n,*il) || *iu > *n) {
*info = -9;
}
}
}
if (*info == 0) {
if (*ldz < 1 || ( wantz && *ldz < *n ) ) {
*info = -14;
}
}
if (*info == 0) {
work[1] = (Treal) lwmin;
iwork[1] = liwmin;
if (*lwork < lwmin && ! lquery) {
*info = -17;
} else if (*liwork < liwmin && ! lquery) {
*info = -19;
}
}
if (*info != 0) {
i__1 = -(*info);
template_blas_erbla("STEVR", &i__1);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
*m = 0;
if (*n == 0) {
return 0;
}
if (*n == 1) {
if (alleig || indeig) {
*m = 1;
w[1] = d__[1];
} else {
if (*vl < d__[1] && *vu >= d__[1]) {
*m = 1;
w[1] = d__[1];
}
}
if (wantz) {
z__[z_dim1 + 1] = 1.;
}
return 0;
}
/* Get machine constants. */
safmin = template_lapack_lamch("Safe minimum", (Treal)0);
eps = template_lapack_lamch("Precision", (Treal)0);
smlnum = safmin / eps;
bignum = 1. / smlnum;
rmin = template_blas_sqrt(smlnum);
/* Computing MIN */
d__1 = template_blas_sqrt(bignum), d__2 = 1. / template_blas_sqrt(template_blas_sqrt(safmin));
rmax = minMACRO(d__1,d__2);
/* Scale matrix to allowable range, if necessary. */
iscale = 0;
vll = *vl;
vuu = *vu;
tnrm = template_lapack_lanst("M", n, &d__[1], &e[1]);
if (tnrm > 0. && tnrm < rmin) {
iscale = 1;
sigma = rmin / tnrm;
} else if (tnrm > rmax) {
iscale = 1;
sigma = rmax / tnrm;
}
if (iscale == 1) {
template_blas_scal(n, &sigma, &d__[1], &c__1);
i__1 = *n - 1;
template_blas_scal(&i__1, &sigma, &e[1], &c__1);
if (valeig) {
vll = *vl * sigma;
vuu = *vu * sigma;
}
}
/* Initialize indices into workspaces. Note: These indices are used only */
/* if DSTERF or DSTEMR fail. */
/* IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in DSTEBZ and */
/* stores the block indices of each of the M<=N eigenvalues. */
indibl = 1;
/* IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in DSTEBZ and */
/* stores the starting and finishing indices of each block. */
indisp = indibl + *n;
/* IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors */
/* that corresponding to eigenvectors that fail to converge in */
/* DSTEIN. This information is discarded; if any fail, the driver */
/* returns INFO > 0. */
indifl = indisp + *n;
/* INDIWO is the offset of the remaining integer workspace. */
indiwo = indisp + *n;
/* If all eigenvalues are desired, then */
/* call DSTERF or DSTEMR. If this fails for some eigenvalue, then */
/* try DSTEBZ. */
test = FALSE_;
if (indeig) {
if (*il == 1 && *iu == *n) {
test = TRUE_;
}
}
if ((alleig || test) && ieeeok == 1) {
i__1 = *n - 1;
template_blas_copy(&i__1, &e[1], &c__1, &work[1], &c__1);
if (! wantz) {
template_blas_copy(n, &d__[1], &c__1, &w[1], &c__1);
template_lapack_sterf(n, &w[1], &work[1], info);
} else {
template_blas_copy(n, &d__[1], &c__1, &work[*n + 1], &c__1);
if (*abstol <= *n * 2. * eps) {
tryrac = TRUE_;
} else {
tryrac = FALSE_;
}
i__1 = *lwork - (*n << 1);
template_lapack_stemr(jobz, "A", n, &work[*n + 1], &work[1], vl, vu, il, iu, m,
&w[1], &z__[z_offset], ldz, n, &isuppz[1], &tryrac, &work[
(*n << 1) + 1], &i__1, &iwork[1], liwork, info);
}
if (*info == 0) {
*m = *n;
goto L10;
}
*info = 0;
}
/* Otherwise, call DSTEBZ and, if eigenvectors are desired, DSTEIN. */
if (wantz) {
*(unsigned char *)order = 'B';
} else {
*(unsigned char *)order = 'E';
}
template_lapack_stebz(range, order, n, &vll, &vuu, il, iu, abstol, &d__[1], &e[1], m, &
nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[1], &iwork[
indiwo], info);
if (wantz) {
template_lapack_stein(n, &d__[1], &e[1], m, &w[1], &iwork[indibl], &iwork[indisp], &
z__[z_offset], ldz, &work[1], &iwork[indiwo], &iwork[indifl],
info);
}
/* If matrix was scaled, then rescale eigenvalues appropriately. */
L10:
if (iscale == 1) {
if (*info == 0) {
imax = *m;
} else {
imax = *info - 1;
}
d__1 = 1. / sigma;
template_blas_scal(&imax, &d__1, &w[1], &c__1);
}
/* If eigenvalues are not in order, then sort them, along with */
/* eigenvectors. */
if (wantz) {
i__1 = *m - 1;
for (j = 1; j <= i__1; ++j) {
i__ = 0;
tmp1 = w[j];
i__2 = *m;
for (jj = j + 1; jj <= i__2; ++jj) {
if (w[jj] < tmp1) {
i__ = jj;
tmp1 = w[jj];
}
/* L20: */
}
if (i__ != 0) {
itmp1 = iwork[i__];
w[i__] = w[j];
iwork[i__] = iwork[j];
w[j] = tmp1;
iwork[j] = itmp1;
template_blas_swap(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1],
&c__1);
}
/* L30: */
}
}
/* Causes problems with tests 19 & 20: */
/* IF (wantz .and. INDEIG ) Z( 1,1) = Z(1,1) / 1.002 + .002 */
work[1] = (Treal) lwmin;
iwork[1] = liwmin;
return 0;
/* End of DSTEVR */
} /* dstevr_ */
#endif
|