File: template_lapack_syev.h

package info (click to toggle)
ergo 3.8.2-1.1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 17,568 kB
  • sloc: cpp: 94,763; ansic: 17,785; sh: 10,701; makefile: 1,403; yacc: 127; lex: 116; awk: 23
file content (292 lines) | stat: -rw-r--r-- 8,745 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */
 
 /* This file belongs to the template_lapack part of the Ergo source 
  * code. The source files in the template_lapack directory are modified
  * versions of files originally distributed as CLAPACK, see the
  * Copyright/license notice in the file template_lapack/COPYING.
  */
 

#ifndef TEMPLATE_LAPACK_SYEV_HEADER
#define TEMPLATE_LAPACK_SYEV_HEADER


template<class Treal>
int template_lapack_syev(const char *jobz, const char *uplo, const integer *n, Treal *a,
	 const integer *lda, Treal *w, Treal *work, const integer *lwork, 
	integer *info)
{

  //printf("entering template_lapack_syev\n");

/*  -- LAPACK driver routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       June 30, 1999   


    Purpose   
    =======   

    DSYEV computes all eigenvalues and, optionally, eigenvectors of a   
    real symmetric matrix A.   

    Arguments   
    =========   

    JOBZ    (input) CHARACTER*1   
            = 'N':  Compute eigenvalues only;   
            = 'V':  Compute eigenvalues and eigenvectors.   

    UPLO    (input) CHARACTER*1   
            = 'U':  Upper triangle of A is stored;   
            = 'L':  Lower triangle of A is stored.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    A       (input/output) DOUBLE PRECISION array, dimension (LDA, N)   
            On entry, the symmetric matrix A.  If UPLO = 'U', the   
            leading N-by-N upper triangular part of A contains the   
            upper triangular part of the matrix A.  If UPLO = 'L',   
            the leading N-by-N lower triangular part of A contains   
            the lower triangular part of the matrix A.   
            On exit, if JOBZ = 'V', then if INFO = 0, A contains the   
            orthonormal eigenvectors of the matrix A.   
            If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')   
            or the upper triangle (if UPLO='U') of A, including the   
            diagonal, is destroyed.   

    LDA     (input) INTEGER   
            The leading dimension of the array A.  LDA >= max(1,N).   

    W       (output) DOUBLE PRECISION array, dimension (N)   
            If INFO = 0, the eigenvalues in ascending order.   

    WORK    (workspace/output) DOUBLE PRECISION array, dimension (LWORK)   
            On exit, if INFO = 0, WORK(1) returns the optimal LWORK.   

    LWORK   (input) INTEGER   
            The length of the array WORK.  LWORK >= max(1,3*N-1).   
            For optimal efficiency, LWORK >= (NB+2)*N,   
            where NB is the blocksize for DSYTRD returned by ILAENV.   

            If LWORK = -1, then a workspace query is assumed; the routine   
            only calculates the optimal size of the WORK array, returns   
            this value as the first entry of the WORK array, and no error   
            message related to LWORK is issued by XERBLA.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  if INFO = i, the algorithm failed to converge; i   
                  off-diagonal elements of an intermediate tridiagonal   
                  form did not converge to zero.   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
     integer c__1 = 1;
     integer c_n1 = -1;
     integer c__0 = 0;
     Treal c_b17 = 1.;
    
    /* System generated locals */
    integer a_dim1, a_offset, i__1, i__2;
    Treal d__1;
    /* Local variables */
     integer inde;
     Treal anrm;
     integer imax;
     Treal rmin, rmax;
     Treal sigma;
     integer iinfo;
     logical lower, wantz;
     integer nb;
     integer iscale;
     Treal safmin;
     Treal bignum;
     integer indtau;
     integer indwrk;
     integer llwork;
     Treal smlnum;
     integer lwkopt;
     logical lquery;
     Treal eps;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]


    a_dim1 = *lda;
    a_offset = 1 + a_dim1 * 1;
    a -= a_offset;
    --w;
    --work;

    /* Initialization added by Elias to get rid of compiler warnings. */
    lwkopt = 0;
    /* Function Body */
    wantz = template_blas_lsame(jobz, "V");
    lower = template_blas_lsame(uplo, "L");
    lquery = *lwork == -1;

    *info = 0;
    if (! (wantz || template_blas_lsame(jobz, "N"))) {
	*info = -1;
    } else if (! (lower || template_blas_lsame(uplo, "U"))) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    } else if (*lda < maxMACRO(1,*n)) {
	*info = -5;
    } else /* if(complicated condition) */ {
/* Computing MAX */
	i__1 = 1, i__2 = *n * 3 - 1;
	if (*lwork < maxMACRO(i__1,i__2) && ! lquery) {
	    *info = -8;
	}
    }

    if (*info == 0) {
        nb = template_lapack_ilaenv(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6,
		 (ftnlen)1);
/* Computing MAX */
	i__1 = 1, i__2 = (nb + 2) * *n;
	lwkopt = maxMACRO(i__1,i__2);
	work[1] = (Treal) lwkopt;
    }

    if (*info != 0) {
	i__1 = -(*info);
	template_blas_erbla("SYEV  ", &i__1);
	return 0;
    } else if (lquery) {
	return 0;
    }

/*     Quick return if possible */

    if (*n == 0) {
	work[1] = 1.;
	return 0;
    }

    if (*n == 1) {
	w[1] = a_ref(1, 1);
	work[1] = 3.;
	if (wantz) {
	    a_ref(1, 1) = 1.;
	}
	return 0;
    }

/*     Get machine constants. */

    //printf("before getting machine constants.\n");

    //printf("calling template_lapack_lamch for Safe minimum\n");
    safmin = template_lapack_lamch("Safe minimum", (Treal)0);
    //printf("template_lapack_lamch for Safe minimum returned\n");

    eps = template_lapack_lamch("Precision", (Treal)0);

    //printf("after getting machine constants.\n");

    smlnum = safmin / eps;
    bignum = 1. / smlnum;
    rmin = template_blas_sqrt(smlnum);
    rmax = template_blas_sqrt(bignum);

/*     Scale matrix to allowable range, if necessary. */

    anrm = template_lapack_lansy("M", uplo, n, &a[a_offset], lda, &work[1]);
    iscale = 0;
    if (anrm > 0. && anrm < rmin) {
	iscale = 1;
	sigma = rmin / anrm;
    } else if (anrm > rmax) {
	iscale = 1;
	sigma = rmax / anrm;
    }
    if (iscale == 1) {
	template_lapack_lascl(uplo, &c__0, &c__0, &c_b17, &sigma, n, n, &a[a_offset], lda, 
		info);
    }

/*     Call DSYTRD to reduce symmetric matrix to tridiagonal form. */

    inde = 1;
    indtau = inde + *n;
    indwrk = indtau + *n;
    llwork = *lwork - indwrk + 1;
    template_lapack_sytrd(uplo, n, &a[a_offset], lda, &w[1], &work[inde], &work[indtau], &
	    work[indwrk], &llwork, &iinfo);

/*     For eigenvalues only, call DSTERF.  For eigenvectors, first call   
       DORGTR to generate the orthogonal matrix, then call DSTEQR. */

    if (! wantz) {
	template_lapack_sterf(n, &w[1], &work[inde], info);
    } else {
	template_lapack_orgtr(uplo, n, &a[a_offset], lda, &work[indtau], &work[indwrk], &
		llwork, &iinfo);
	template_lapack_steqr(jobz, n, &w[1], &work[inde], &a[a_offset], lda, &work[indtau],
		 info);
    }

/*     If matrix was scaled, then rescale eigenvalues appropriately. */

    if (iscale == 1) {
	if (*info == 0) {
	    imax = *n;
	} else {
	    imax = *info - 1;
	}
	d__1 = 1. / sigma;
	template_blas_scal(&imax, &d__1, &w[1], &c__1);
    }

/*     Set WORK(1) to optimal workspace size. */

    work[1] = (Treal) lwkopt;

    return 0;

/*     End of DSYEV */

} /* dsyev_ */

#undef a_ref


#endif