1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/* This file belongs to the template_lapack part of the Ergo source
* code. The source files in the template_lapack directory are modified
* versions of files originally distributed as CLAPACK, see the
* Copyright/license notice in the file template_lapack/COPYING.
*/
#ifndef TEMPLATE_LAPACK_SYEV_HEADER
#define TEMPLATE_LAPACK_SYEV_HEADER
template<class Treal>
int template_lapack_syev(const char *jobz, const char *uplo, const integer *n, Treal *a,
const integer *lda, Treal *w, Treal *work, const integer *lwork,
integer *info)
{
//printf("entering template_lapack_syev\n");
/* -- LAPACK driver routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
June 30, 1999
Purpose
=======
DSYEV computes all eigenvalues and, optionally, eigenvectors of a
real symmetric matrix A.
Arguments
=========
JOBZ (input) CHARACTER*1
= 'N': Compute eigenvalues only;
= 'V': Compute eigenvalues and eigenvectors.
UPLO (input) CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
N (input) INTEGER
The order of the matrix A. N >= 0.
A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
On entry, the symmetric matrix A. If UPLO = 'U', the
leading N-by-N upper triangular part of A contains the
upper triangular part of the matrix A. If UPLO = 'L',
the leading N-by-N lower triangular part of A contains
the lower triangular part of the matrix A.
On exit, if JOBZ = 'V', then if INFO = 0, A contains the
orthonormal eigenvectors of the matrix A.
If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
or the upper triangle (if UPLO='U') of A, including the
diagonal, is destroyed.
LDA (input) INTEGER
The leading dimension of the array A. LDA >= max(1,N).
W (output) DOUBLE PRECISION array, dimension (N)
If INFO = 0, the eigenvalues in ascending order.
WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK)
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK (input) INTEGER
The length of the array WORK. LWORK >= max(1,3*N-1).
For optimal efficiency, LWORK >= (NB+2)*N,
where NB is the blocksize for DSYTRD returned by ILAENV.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, the algorithm failed to converge; i
off-diagonal elements of an intermediate tridiagonal
form did not converge to zero.
=====================================================================
Test the input parameters.
Parameter adjustments */
/* Table of constant values */
integer c__1 = 1;
integer c_n1 = -1;
integer c__0 = 0;
Treal c_b17 = 1.;
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2;
Treal d__1;
/* Local variables */
integer inde;
Treal anrm;
integer imax;
Treal rmin, rmax;
Treal sigma;
integer iinfo;
logical lower, wantz;
integer nb;
integer iscale;
Treal safmin;
Treal bignum;
integer indtau;
integer indwrk;
integer llwork;
Treal smlnum;
integer lwkopt;
logical lquery;
Treal eps;
#define a_ref(a_1,a_2) a[(a_2)*a_dim1 + a_1]
a_dim1 = *lda;
a_offset = 1 + a_dim1 * 1;
a -= a_offset;
--w;
--work;
/* Initialization added by Elias to get rid of compiler warnings. */
lwkopt = 0;
/* Function Body */
wantz = template_blas_lsame(jobz, "V");
lower = template_blas_lsame(uplo, "L");
lquery = *lwork == -1;
*info = 0;
if (! (wantz || template_blas_lsame(jobz, "N"))) {
*info = -1;
} else if (! (lower || template_blas_lsame(uplo, "U"))) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (*lda < maxMACRO(1,*n)) {
*info = -5;
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = 1, i__2 = *n * 3 - 1;
if (*lwork < maxMACRO(i__1,i__2) && ! lquery) {
*info = -8;
}
}
if (*info == 0) {
nb = template_lapack_ilaenv(&c__1, "DSYTRD", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6,
(ftnlen)1);
/* Computing MAX */
i__1 = 1, i__2 = (nb + 2) * *n;
lwkopt = maxMACRO(i__1,i__2);
work[1] = (Treal) lwkopt;
}
if (*info != 0) {
i__1 = -(*info);
template_blas_erbla("SYEV ", &i__1);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
if (*n == 0) {
work[1] = 1.;
return 0;
}
if (*n == 1) {
w[1] = a_ref(1, 1);
work[1] = 3.;
if (wantz) {
a_ref(1, 1) = 1.;
}
return 0;
}
/* Get machine constants. */
//printf("before getting machine constants.\n");
//printf("calling template_lapack_lamch for Safe minimum\n");
safmin = template_lapack_lamch("Safe minimum", (Treal)0);
//printf("template_lapack_lamch for Safe minimum returned\n");
eps = template_lapack_lamch("Precision", (Treal)0);
//printf("after getting machine constants.\n");
smlnum = safmin / eps;
bignum = 1. / smlnum;
rmin = template_blas_sqrt(smlnum);
rmax = template_blas_sqrt(bignum);
/* Scale matrix to allowable range, if necessary. */
anrm = template_lapack_lansy("M", uplo, n, &a[a_offset], lda, &work[1]);
iscale = 0;
if (anrm > 0. && anrm < rmin) {
iscale = 1;
sigma = rmin / anrm;
} else if (anrm > rmax) {
iscale = 1;
sigma = rmax / anrm;
}
if (iscale == 1) {
template_lapack_lascl(uplo, &c__0, &c__0, &c_b17, &sigma, n, n, &a[a_offset], lda,
info);
}
/* Call DSYTRD to reduce symmetric matrix to tridiagonal form. */
inde = 1;
indtau = inde + *n;
indwrk = indtau + *n;
llwork = *lwork - indwrk + 1;
template_lapack_sytrd(uplo, n, &a[a_offset], lda, &w[1], &work[inde], &work[indtau], &
work[indwrk], &llwork, &iinfo);
/* For eigenvalues only, call DSTERF. For eigenvectors, first call
DORGTR to generate the orthogonal matrix, then call DSTEQR. */
if (! wantz) {
template_lapack_sterf(n, &w[1], &work[inde], info);
} else {
template_lapack_orgtr(uplo, n, &a[a_offset], lda, &work[indtau], &work[indwrk], &
llwork, &iinfo);
template_lapack_steqr(jobz, n, &w[1], &work[inde], &a[a_offset], lda, &work[indtau],
info);
}
/* If matrix was scaled, then rescale eigenvalues appropriately. */
if (iscale == 1) {
if (*info == 0) {
imax = *n;
} else {
imax = *info - 1;
}
d__1 = 1. / sigma;
template_blas_scal(&imax, &d__1, &w[1], &c__1);
}
/* Set WORK(1) to optimal workspace size. */
work[1] = (Treal) lwkopt;
return 0;
/* End of DSYEV */
} /* dsyev_ */
#undef a_ref
#endif
|