1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/* This file belongs to the template_lapack part of the Ergo source
* code. The source files in the template_lapack directory are modified
* versions of files originally distributed as CLAPACK, see the
* Copyright/license notice in the file template_lapack/COPYING.
*/
#ifndef TEMPLATE_LAPACK_TPTRI_HEADER
#define TEMPLATE_LAPACK_TPTRI_HEADER
#include "template_lapack_common.h"
template<class Treal>
int template_lapack_tptri(const char *uplo, const char *diag, const integer *n, Treal *
ap, integer *info)
{
/* -- LAPACK routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
September 30, 1994
Purpose
=======
DTPTRI computes the inverse of a real upper or lower triangular
matrix A stored in packed format.
Arguments
=========
UPLO (input) CHARACTER*1
= 'U': A is upper triangular;
= 'L': A is lower triangular.
DIAG (input) CHARACTER*1
= 'N': A is non-unit triangular;
= 'U': A is unit triangular.
N (input) INTEGER
The order of the matrix A. N >= 0.
AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)
On entry, the upper or lower triangular matrix A, stored
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n.
See below for further details.
On exit, the (triangular) inverse of the original matrix, in
the same packed storage format.
INFO (output) INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, A(i,i) is exactly zero. The triangular
matrix is singular and its inverse can not be computed.
Further Details
===============
A triangular matrix A can be transferred to packed storage using one
of the following program segments:
UPLO = 'U': UPLO = 'L':
JC = 1 JC = 1
DO 2 J = 1, N DO 2 J = 1, N
DO 1 I = 1, J DO 1 I = J, N
AP(JC+I-1) = A(I,J) AP(JC+I-J) = A(I,J)
1 CONTINUE 1 CONTINUE
JC = JC + J JC = JC + N - J + 1
2 CONTINUE 2 CONTINUE
=====================================================================
Test the input parameters.
Parameter adjustments */
/* Table of constant values */
integer c__1 = 1;
/* System generated locals */
integer i__1, i__2;
/* Local variables */
integer j;
logical upper;
integer jc, jj;
integer jclast;
logical nounit;
Treal ajj;
--ap;
/* Initialization added by Elias to get rid of compiler warnings. */
jclast = 0;
/* Function Body */
*info = 0;
upper = template_blas_lsame(uplo, "U");
nounit = template_blas_lsame(diag, "N");
if (! upper && ! template_blas_lsame(uplo, "L")) {
*info = -1;
} else if (! nounit && ! template_blas_lsame(diag, "U")) {
*info = -2;
} else if (*n < 0) {
*info = -3;
}
if (*info != 0) {
i__1 = -(*info);
template_blas_erbla("TPTRI ", &i__1);
return 0;
}
/* Check for singularity if non-unit. */
if (nounit) {
if (upper) {
jj = 0;
i__1 = *n;
for (*info = 1; *info <= i__1; ++(*info)) {
jj += *info;
if (ap[jj] == 0.) {
return 0;
}
/* L10: */
}
} else {
jj = 1;
i__1 = *n;
for (*info = 1; *info <= i__1; ++(*info)) {
if (ap[jj] == 0.) {
return 0;
}
jj = jj + *n - *info + 1;
/* L20: */
}
}
*info = 0;
}
if (upper) {
/* Compute inverse of upper triangular matrix. */
jc = 1;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (nounit) {
ap[jc + j - 1] = 1. / ap[jc + j - 1];
ajj = -ap[jc + j - 1];
} else {
ajj = -1.;
}
/* Compute elements 1:j-1 of j-th column. */
i__2 = j - 1;
template_blas_tpmv("Upper", "No transpose", diag, &i__2, &ap[1], &ap[jc], &
c__1);
i__2 = j - 1;
template_blas_scal(&i__2, &ajj, &ap[jc], &c__1);
jc += j;
/* L30: */
}
} else {
/* Compute inverse of lower triangular matrix. */
jc = *n * (*n + 1) / 2;
for (j = *n; j >= 1; --j) {
if (nounit) {
ap[jc] = 1. / ap[jc];
ajj = -ap[jc];
} else {
ajj = -1.;
}
if (j < *n) {
/* Compute elements j+1:n of j-th column. */
i__1 = *n - j;
template_blas_tpmv("Lower", "No transpose", diag, &i__1, &ap[jclast], &ap[
jc + 1], &c__1);
i__1 = *n - j;
template_blas_scal(&i__1, &ajj, &ap[jc + 1], &c__1);
}
jclast = jc;
jc = jc - *n + j - 2;
/* L40: */
}
}
return 0;
/* End of DTPTRI */
} /* dtptri_ */
#endif
|