File: template_lapack_tptri.h

package info (click to toggle)
ergo 3.8.2-1.1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 17,568 kB
  • sloc: cpp: 94,763; ansic: 17,785; sh: 10,701; makefile: 1,403; yacc: 127; lex: 116; awk: 23
file content (231 lines) | stat: -rw-r--r-- 6,493 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */
 
 /* This file belongs to the template_lapack part of the Ergo source 
  * code. The source files in the template_lapack directory are modified
  * versions of files originally distributed as CLAPACK, see the
  * Copyright/license notice in the file template_lapack/COPYING.
  */
 

#ifndef TEMPLATE_LAPACK_TPTRI_HEADER
#define TEMPLATE_LAPACK_TPTRI_HEADER

#include "template_lapack_common.h"

template<class Treal>
int template_lapack_tptri(const char *uplo, const char *diag, const integer *n, Treal *
	ap, integer *info)
{
/*  -- LAPACK routine (version 3.0) --   
       Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,   
       Courant Institute, Argonne National Lab, and Rice University   
       September 30, 1994   


    Purpose   
    =======   

    DTPTRI computes the inverse of a real upper or lower triangular   
    matrix A stored in packed format.   

    Arguments   
    =========   

    UPLO    (input) CHARACTER*1   
            = 'U':  A is upper triangular;   
            = 'L':  A is lower triangular.   

    DIAG    (input) CHARACTER*1   
            = 'N':  A is non-unit triangular;   
            = 'U':  A is unit triangular.   

    N       (input) INTEGER   
            The order of the matrix A.  N >= 0.   

    AP      (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2)   
            On entry, the upper or lower triangular matrix A, stored   
            columnwise in a linear array.  The j-th column of A is stored   
            in the array AP as follows:   
            if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;   
            if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n.   
            See below for further details.   
            On exit, the (triangular) inverse of the original matrix, in   
            the same packed storage format.   

    INFO    (output) INTEGER   
            = 0:  successful exit   
            < 0:  if INFO = -i, the i-th argument had an illegal value   
            > 0:  if INFO = i, A(i,i) is exactly zero.  The triangular   
                  matrix is singular and its inverse can not be computed.   

    Further Details   
    ===============   

    A triangular matrix A can be transferred to packed storage using one   
    of the following program segments:   

    UPLO = 'U':                      UPLO = 'L':   

          JC = 1                           JC = 1   
          DO 2 J = 1, N                    DO 2 J = 1, N   
             DO 1 I = 1, J                    DO 1 I = J, N   
                AP(JC+I-1) = A(I,J)              AP(JC+I-J) = A(I,J)   
        1    CONTINUE                    1    CONTINUE   
             JC = JC + J                      JC = JC + N - J + 1   
        2 CONTINUE                       2 CONTINUE   

    =====================================================================   


       Test the input parameters.   

       Parameter adjustments */
    /* Table of constant values */
     integer c__1 = 1;
    
    /* System generated locals */
    integer i__1, i__2;
    /* Local variables */
     integer j;
     logical upper;
     integer jc, jj;
     integer jclast;
     logical nounit;
     Treal ajj;


    --ap;

    /* Initialization added by Elias to get rid of compiler warnings. */
    jclast = 0;
    /* Function Body */
    *info = 0;
    upper = template_blas_lsame(uplo, "U");
    nounit = template_blas_lsame(diag, "N");
    if (! upper && ! template_blas_lsame(uplo, "L")) {
	*info = -1;
    } else if (! nounit && ! template_blas_lsame(diag, "U")) {
	*info = -2;
    } else if (*n < 0) {
	*info = -3;
    }
    if (*info != 0) {
	i__1 = -(*info);
	template_blas_erbla("TPTRI ", &i__1);
	return 0;
    }

/*     Check for singularity if non-unit. */

    if (nounit) {
	if (upper) {
	    jj = 0;
	    i__1 = *n;
	    for (*info = 1; *info <= i__1; ++(*info)) {
		jj += *info;
		if (ap[jj] == 0.) {
		    return 0;
		}
/* L10: */
	    }
	} else {
	    jj = 1;
	    i__1 = *n;
	    for (*info = 1; *info <= i__1; ++(*info)) {
		if (ap[jj] == 0.) {
		    return 0;
		}
		jj = jj + *n - *info + 1;
/* L20: */
	    }
	}
	*info = 0;
    }

    if (upper) {

/*        Compute inverse of upper triangular matrix. */

	jc = 1;
	i__1 = *n;
	for (j = 1; j <= i__1; ++j) {
	    if (nounit) {
		ap[jc + j - 1] = 1. / ap[jc + j - 1];
		ajj = -ap[jc + j - 1];
	    } else {
		ajj = -1.;
	    }

/*           Compute elements 1:j-1 of j-th column. */

	    i__2 = j - 1;
	    template_blas_tpmv("Upper", "No transpose", diag, &i__2, &ap[1], &ap[jc], &
		    c__1);
	    i__2 = j - 1;
	    template_blas_scal(&i__2, &ajj, &ap[jc], &c__1);
	    jc += j;
/* L30: */
	}

    } else {

/*        Compute inverse of lower triangular matrix. */

	jc = *n * (*n + 1) / 2;
	for (j = *n; j >= 1; --j) {
	    if (nounit) {
		ap[jc] = 1. / ap[jc];
		ajj = -ap[jc];
	    } else {
		ajj = -1.;
	    }
	    if (j < *n) {

/*              Compute elements j+1:n of j-th column. */

		i__1 = *n - j;
		template_blas_tpmv("Lower", "No transpose", diag, &i__1, &ap[jclast], &ap[
			jc + 1], &c__1);
		i__1 = *n - j;
		template_blas_scal(&i__1, &ajj, &ap[jc + 1], &c__1);
	    }
	    jclast = jc;
	    jc = jc - *n + j - 2;
/* L40: */
	}
    }

    return 0;

/*     End of DTPTRI */

} /* dtptri_ */

#endif