File: SCF_general.cc

package info (click to toggle)
ergo 3.8.2-1.1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 17,568 kB
  • sloc: cpp: 94,763; ansic: 17,785; sh: 10,701; makefile: 1,403; yacc: 127; lex: 116; awk: 23
file content (944 lines) | stat: -rw-r--r-- 37,436 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */

/** @file SCF_general.cc

    @brief Class for self-consistent field (SCF) procedure; base class
    that can be used for both restricted and unrestricted cases.

    @author: Elias Rudberg <em>responsible</em>.
*/

#include <sstream>
#include <sys/types.h>
#include <unistd.h>
#include "SCF_general.h"
#include "output.h"
#include "scf_utils.h"
#include "matrix_utilities.h"
#include "utilities.h"
#include "integral_matrix_wrappers.h"
#include "machine_epsilon.h"
#include "units.h"
#include "SCF_statistics.h"
#include "AllocatorManager.h"


static ergo_real get_eucl_norm_try_different_acc(const symmMatrix & A, ergo_real & acc) {
  // First try with acc = sqrt(epsilon) and if that is too difficult try with lower accuracy.
  acc = template_blas_sqrt(mat::getMachineEpsilon<ergo_real>());
  int maxIter = 1000;
  ergo_real result_eucl_norm = -1;
  try {
    result_eucl_norm = A.eucl(acc, maxIter);
    return result_eucl_norm;
  }
  catch(...) {
    ergo_real accNew = template_blas_sqrt(acc);
    do_output(LOG_CAT_INFO, LOG_AREA_SCF, "get_eucl_norm_try_different_acc(): first attempt failed, now reducing accuracy from %g to %g", acc, accNew);
    acc = accNew;
  }
  try {
    result_eucl_norm = A.eucl(acc, maxIter);
    return result_eucl_norm;
  }
  catch(...) {
    ergo_real accNew = template_blas_sqrt(acc);
    do_output(LOG_CAT_INFO, LOG_AREA_SCF, "get_eucl_norm_try_different_acc(): second attempt failed, now reducing accuracy from %g to %g", acc, accNew);
    acc = accNew;
  }
  // Now call eucl without maxIter, let it use as many iterations as it needs to reach the reduced accuracy acc.
  return A.eucl(acc);
}


SCF_general::SCF_general(const Molecule& molecule_,
			 const Molecule& extraCharges_,
			 const BasisInfoStruct & basisInfo_, 
			 const IntegralInfo & integralInfo_,
			 const char* guessDmatFileName_,
			 const JK::Params& J_K_params_,
			 const Dft::GridParams& gridParams_,
			 const SCF::Options& scfoptsPtr,
			 const SCF::MatOptions& matOpts_,
			 ergo_real threshold_integrals_1el_input)
  : 
  molecule(molecule_),
  extraCharges(extraCharges_),
  basisInfo(basisInfo_),
  integralInfo(integralInfo_), 
  guessDmatFileName(guessDmatFileName_), // FIXME: copy this object properly
  J_K_params(J_K_params_), 
  gridParams(gridParams_), 
  scfopts(scfoptsPtr), 
  matOpts(matOpts_),
  threshold_integrals_1el(threshold_integrals_1el_input),
  DIIS(NULL),
  curr_cycle_stats(NULL)
{
  int n = basisInfo.noOfBasisFuncs;
  do_output(LOG_CAT_INFO, LOG_AREA_SCF, "SCF_general constructor, number of basis functions: %i", n);

  output_current_memory_usage(LOG_AREA_SCF, "beginning of SCF_general constructor");

  // Report info about host name, process ID etc.
  do_output(LOG_CAT_INFO, LOG_AREA_SCF, "************** Some general info here **********************");
  do_output_time(LOG_CAT_INFO, LOG_AREA_SCF, "VERSION: " VERSION "  time : ");
  do_output(LOG_CAT_INFO, LOG_AREA_SCF, "machine_epsilon = %9.3g", (double)get_machine_epsilon());
  do_output(LOG_CAT_INFO, LOG_AREA_SCF, "sizeof(ergo_real) = %i", sizeof(ergo_real));
  do_output(LOG_CAT_INFO, LOG_AREA_SCF, "sizeof(size_t)    = %i", sizeof(size_t));
  do_output(LOG_CAT_INFO, LOG_AREA_SCF, "sizeof(int)       = %i", sizeof(int));
  do_output(LOG_CAT_INFO, LOG_AREA_SCF, "sizeof(long)      = %i", sizeof(long));
  do_output(LOG_CAT_INFO, LOG_AREA_SCF, "sizeof(char*)     = %i", sizeof(char*));
  host_name_struct hostName;
  get_host_name(&hostName);
  do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Host name:         '%s'", hostName.s);
  working_directory_struct workingDirectory;
  get_working_directory(&workingDirectory);
  do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Working directory: '%s'", workingDirectory.s);
  do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Process ID (PID): %10i", getpid());
  do_output(LOG_CAT_INFO, LOG_AREA_SCF, "************************************************************");
  ergo_real minDist, maxDist;
  molecule.getExtremeInternuclearDistancesQuadratic(minDist, maxDist);
  do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Min internuclear distance: %12.5f a.u.  = %12.5f Angstrom", (double)minDist, (double)(minDist/UNIT_one_Angstrom));
  do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Max internuclear distance: %12.5f a.u.  = %12.5f Angstrom", (double)maxDist, (double)(maxDist/UNIT_one_Angstrom));

  S_symm.resetSizesAndBlocks(matOpts.size_block_info,
				    matOpts.size_block_info);
  if(compute_overlap_matrix_sparse(basisInfo, S_symm,
				   matOpts.permutationHML) != 0)
    {
      do_output(LOG_CAT_ERROR, LOG_AREA_SCF, "error in compute_overlap_matrix_sparse");
      throw "error in compute_overlap_matrix_sparse";
    }

  output_sparsity_symm(n, S_symm, "S_symm before trunc");  
  output_current_memory_usage(LOG_AREA_SCF, "after getting overlap matrix");
  {
    do_output(LOG_CAT_INFO, LOG_AREA_SCF, 
	      "truncating S using threshold value %6.2g", (double)scfopts.sparse_threshold_for_S);
    double nnz_before_trunc_pc  = (double)S_symm.nnz()  * 100 / ((double)n*n); 
    ergo_real truncError = S_symm.eucl_thresh(scfopts.sparse_threshold_for_S);
    double nnz_after_trunc_pc  = (double)S_symm.nnz()  * 100 / ((double)n*n); 
    do_output(LOG_CAT_INFO, LOG_AREA_SCF, 
	      "Truncated S (eucl), selected threshold = %10.6g, returned error = %10.6g, nnz before = %3.4f %%, nnz after = %3.4f %%",
	      scfopts.sparse_threshold_for_S, (double)truncError, nnz_before_trunc_pc, nnz_after_trunc_pc);    
  }


  if ( scfopts.create_mtx_file_S == 1 ) {
    // Write overlap matrix in matrix market format
    std::stringstream ss_id;
    ss_id << scfopts.calculation_identifier << " - overlap matrix";
    write_matrix_in_matrix_market_format( S_symm, matOpts.inversePermutationHML, "S_matrix", 
					  ss_id.str(), scfopts.method_and_basis_set );
  }
  if ( scfopts.create_basis_func_coord_file == 1 ) {
    write_basis_func_coord_file(basisInfo);
  }
  if( scfopts.create_mtx_files_S_and_quit == 1 ) {
    // Write overlap matrix in matrix market format using different basis function orderings, and then quit.
    create_mtx_files_with_different_orderings(S_symm,
					      scfopts.calculation_identifier,
					      scfopts.method_and_basis_set,
					      matOpts.inversePermutationHML,
					      basisInfo);
    throw "Breaking because create_mtx_files_S_and_quit was set.";
  }
  if ( scfopts.create_2el_integral_m_file == 1 ) 
    write_2el_integral_m_file(basisInfo, integralInfo);

  {
    do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Computing Euclidean norm of overlap matrix (just for fun)...");
    Util::TimeMeter timeMeterEuclS;
    ergo_real acc = -1; // value set by call below
    ergo_real S_symm_euclnorm = get_eucl_norm_try_different_acc(S_symm, acc);
    timeMeterEuclS.print(LOG_AREA_SCF, "S_symm.eucl()");
    do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Euclidean norm of overlap matrix = %22.11f  (acc %7.3g)",
	      (double)S_symm_euclnorm, (double)acc);
  }

  invCholFactor.resetSizesAndBlocks(matOpts.size_block_info,
					   matOpts.size_block_info);
  do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Calling invCholFactor.inch with matOpts.threshold_inch = %g", 
	    (double)matOpts.threshold_inch);
  Util::TimeMeter timeMeterInch;
  invCholFactor.inch(S_symm, matOpts.threshold_inch, mat::right);
  timeMeterInch.print(LOG_AREA_SCF, "invCholFactor.inch");

  output_sparsity_triang(n, invCholFactor, "invCholFactor before truncation");
  {
    do_output(LOG_CAT_INFO, LOG_AREA_SCF, 
	      "truncating Z using threshold value %6.2g", (double)scfopts.sparse_threshold_for_Z);
    double nnz_before_trunc_pc  = (double)invCholFactor.nnz()  * 100 / ((double)n*n); 
    ergo_real truncError = invCholFactor.eucl_thresh(scfopts.sparse_threshold_for_Z);
    double nnz_after_trunc_pc  = (double)invCholFactor.nnz()  * 100 / ((double)n*n); 
    do_output(LOG_CAT_INFO, LOG_AREA_SCF, 
	      "Truncated Z (eucl), selected threshold = %10.6g, returned error = %10.6g, nnz before = %3.4f %%, nnz after = %3.4f %%",
	      scfopts.sparse_threshold_for_Z, (double)truncError, nnz_before_trunc_pc, nnz_after_trunc_pc);    
  }
  output_sparsity_triang(n, invCholFactor, "invCholFactor after truncation");
  {
    ergo_real invCholFactor_frobnorm = invCholFactor.frob();
    do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Frobenius norm of invCholFactor after truncation = %22.11f", 
	      (double)invCholFactor_frobnorm);
    Util::TimeMeter timeMeterEucl;
    invCholFactor_euclnorm = invCholFactor.eucl( template_blas_sqrt(mat::getMachineEpsilon<ergo_real>()) );
    do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Euclidean norm of invCholFactor after truncation = %22.11f", 
	      (double)invCholFactor_euclnorm);
    timeMeterEucl.print(LOG_AREA_SCF, "invCholFactor.eucl()");
  }
  output_current_memory_usage(LOG_AREA_SCF, "after getting invCholFactor");

  do_output(LOG_CAT_INFO, LOG_AREA_SCF, "testing invCholFactor by computing ZT*S*Z");
  {
    Util::TimeMeter timeMeterZZTS;
    normalMatrix noOver(S_symm);
    normalMatrix inchcopy(invCholFactor);
    normalMatrix tmpSZ, ID;
    normalMatrix the_real_identity;
    tmpSZ.resetSizesAndBlocks(matOpts.size_block_info,
			      matOpts.size_block_info);
    ID.resetSizesAndBlocks(matOpts.size_block_info,
                           matOpts.size_block_info);
    the_real_identity.resetSizesAndBlocks(matOpts.size_block_info,
                                          matOpts.size_block_info);
    tmpSZ = noOver * inchcopy;
    do_output(LOG_CAT_INFO, LOG_AREA_SCF, 
	      "Truncating tmp matrix S*Z using eucl_thresh() with threshold value %6.3g", 
	      (double)matOpts.sparse_threshold);
    tmpSZ.eucl_thresh(matOpts.sparse_threshold);
    ID =  transpose(inchcopy) * tmpSZ;
    the_real_identity = 1;
    ergo_real frobenius_error = normalMatrix::frob_diff(ID, the_real_identity);
    do_output(LOG_CAT_INFO, LOG_AREA_SCF, "frobenius_error for ZT*S*Z is %10g", (double)frobenius_error);
    timeMeterZZTS.print(LOG_AREA_SCF, "testing invCholFactor by computing ZT*S*Z");
  }
  

  S_symm.writeToFile();
  if(scfopts.write_overlap_matrix) {
    if(save_symmetric_matrix(S_symm, basisInfo, "overlap.bin",
			     matOpts.inversePermutationHML) != 0) {
      do_output(LOG_CAT_ERROR, LOG_AREA_SCF,
                "error in ddf_writeShellListAndDensityMatricesToFile");
      throw "error in ddf_writeShellListAndDensityMatricesToFile";
    }
  }
  
  invCholFactor.writeToFile();
  output_current_memory_usage(LOG_AREA_SCF, "after writing invCholFactor and S_symm to file");

  H_core_Matrix.resetSizesAndBlocks(matOpts.size_block_info, matOpts.size_block_info);
  ergo_real nuclearRepulsionEnergyTmp = 0;
  if(scfopts.skip_H_core == 1)
    {
      do_output(LOG_CAT_WARNING, LOG_AREA_SCF, "NOTE: skip_H_core parameter set, will skip construction of H_core matrix!");
      do_output(LOG_CAT_WARNING, LOG_AREA_SCF, "NOTE: skip_H_core parameter set, results will be bogus!");      
    }
  else
    {
      if(scfopts.use_simple_dense_H_core == 1) {
	if(extraCharges.getNoOfAtoms() != 0) {
	  do_output(LOG_CAT_ERROR, LOG_AREA_SCF, "error: (extraCharges.noOfAtoms != 0) not implemented for use_simple_dense_H_core case.");
	  throw "error: (extraCharges.noOfAtoms != 0) not implemented for use_simple_dense_H_core case.";
	}
	if(scfopts.electric_field.v[0] != 0 || scfopts.electric_field.v[1] != 0 || scfopts.electric_field.v[2] != 0) {
	  do_output(LOG_CAT_ERROR, LOG_AREA_SCF, "error: electric field != 0 not implemented for use_simple_dense_H_core case.");
	  throw "error: electric field != 0 not implemented for use_simple_dense_H_core case.";
	}
	if(compute_h_core_matrix_simple_dense(integralInfo,
					      molecule,
					      basisInfo,
					      H_core_Matrix,
					      threshold_integrals_1el,
					      scfopts.no_of_threads_for_V,
					      matOpts.size_block_info,
					      matOpts.permutationHML,
					      nuclearRepulsionEnergyTmp) != 0)
	  {
	    do_output(LOG_CAT_ERROR, LOG_AREA_SCF, "error in compute_h_core_matrix_simple_dense");
	    throw "error in compute_h_core_matrix_simple_dense";
	  }
      }
      else {
	if(compute_h_core_matrix_sparse(integralInfo, 
					molecule, 
					extraCharges,
					scfopts.electric_field.v[0],
					scfopts.electric_field.v[1],
					scfopts.electric_field.v[2],
					basisInfo, 
					H_core_Matrix,
					threshold_integrals_1el,
					scfopts.no_of_threads_for_V,
					scfopts.box_size_for_V_and_T,
					nuclearRepulsionEnergyTmp,
					matOpts.size_block_info,
					matOpts.permutationHML,
					scfopts.create_mtx_files_dipole,
					&matOpts.inversePermutationHML,
					&scfopts.calculation_identifier,
					&scfopts.method_and_basis_set) != 0)
	  {
	    do_output(LOG_CAT_ERROR, LOG_AREA_SCF, "error in compute_h_core_matrix_sparse");
	    throw "error in compute_h_core_matrix_sparse";
	  }
      }
    }
  output_sparsity_symm(n, H_core_Matrix, "H_core_Matrix before trunc");
  {
    ergo_real subspaceThr = 0.001 * scfopts.purification_subspace_err_limit;    
    ergo_real threshold_Hcore = subspaceThr * scfopts.gap_expected_lower_bound / (1+subspaceThr);
    double nnz_before_trunc_pc  = (double)H_core_Matrix.nnz()  * 100 / ((double)n*n); 
    invCholFactor.readFromFile();
    ergo_real truncError = H_core_Matrix.eucl_thresh( threshold_Hcore, &invCholFactor );
    invCholFactor.writeToFile();
    double nnz_after_trunc_pc  = (double)H_core_Matrix.nnz()  * 100 / ((double)n*n); 
    do_output(LOG_CAT_INFO, LOG_AREA_SCF, 
	      "Truncated H_core_Matrix (eucl with Z), selected threshold = %10.6g, returned error = %10.6g, "
	      "nnz before = %3.4f %%, nnz after = %3.4f %%",
	      threshold_Hcore, truncError, nnz_before_trunc_pc, nnz_after_trunc_pc);    
  }
  output_sparsity_symm(n, H_core_Matrix, "H_core_Matrix after trunc");
  
  output_current_memory_usage(LOG_AREA_SCF, "after getting H_core_Matrix");

  ergo_real nuclearElectricFieldEnergyTmp = molecule.getNuclearElectricFieldEnergy(scfopts.electric_field);
  nuclearEnergy = nuclearRepulsionEnergyTmp + nuclearElectricFieldEnergyTmp;

  if ( scfopts.create_mtx_file_H_core == 1 ) {
    // Write H_core matrix in matrix market format
    std::stringstream ss_id;
    ss_id << scfopts.calculation_identifier << " - H_core matrix";
    write_matrix_in_matrix_market_format( H_core_Matrix, matOpts.inversePermutationHML, "H_core_matrix", 
					  ss_id.str(), scfopts.method_and_basis_set );
  }

  H_core_Matrix.writeToFile();
  output_current_memory_usage(LOG_AREA_SCF, "after writing H_core_Matrix to file");

  noOfElectrons = molecule.getNumberOfElectrons();  

  get_hf_weight_and_cam_params(scfopts.use_dft, &CAM_params.alpha,
                               &CAM_params.beta, &CAM_params.mu);

  CAM_params.computeRangeSeparatedExchange =
    CAM_params.beta != ergo_real(0.0);

  energy_2el = 0;
  energy = 0;
  energy_2el_core = 0; // only used when "core density matrix" is used
  energy_2el_valence = 0; // only used when "core density matrix" is used
  energy_of_valence = 0; // only used when "core density matrix" is used
  energy_reference = 0; // only used when "core density matrix" is used
  electronicEntropyTerm = 0;


  /*
    Set parameters in the GetDensFromFock class.
    All parameters must be set up, otherwise you will get exception.
   */
  
  // common parameters 
  DensFromFock.set_general_params(n,
	             		  matOpts.size_block_info);

#ifdef USE_CHUNKS_AND_TASKS
  DensFromFock.set_cht_matrix_params(scfopts.cht_leavesSizeMax, scfopts.cht_blocksize);
#endif

  DensFromFock.set_truncationNormPurification(scfopts.purification_truncation_norm);
  DensFromFock.set_stopCriterionNormPurification(scfopts.purification_stop_crit_norm);
  DensFromFock.set_invCholFactor(invCholFactor, invCholFactor_euclnorm);
  DensFromFock.set_gap_expected_lower_bound(scfopts.gap_expected_lower_bound);
  DensFromFock.set_purification_maxmul(scfopts.purification_maxmul);


  if( scfopts.purification_create_m_files > 0 )
    DensFromFock.set_purification_create_m_files();
  else
    DensFromFock.unset_purification_create_m_files();



  if( scfopts.output_homo_and_lumo_eigenvectors > 0 )
    DensFromFock.set_output_homo_and_lumo_eigenvectors();
  else
    DensFromFock.unset_output_homo_and_lumo_eigenvectors();


  DensFromFock.set_number_of_eigenvectors_to_compute(
    scfopts.number_of_occupied_eigenvectors, scfopts.number_of_unoccupied_eigenvectors);
  
  DensFromFock.set_projection_method_params(
    scfopts.go_back_X_iter_proj_method, 
    scfopts.jump_over_X_iter_proj_method);
  
  /*
    do not plot figures from the purification by default
    set flag before calling function for purification
    unset after calling function for purification
    otherwise, it will be output from all its calls
  */
  DensFromFock.unset_generate_figures();


  if( scfopts.purification_ignore_failure > 0 )
    DensFromFock.set_purification_ignore_failure();
  else
    DensFromFock.unset_purification_ignore_failure();



  if( scfopts.purification_use_rand_perturbation_for_alleigsint > 0 )
    DensFromFock.set_purification_use_rand_perturbation_for_alleigsint();
  else
    DensFromFock.unset_purification_use_rand_perturbation_for_alleigsint();


  // purification or something else?
  if(scfopts.use_diagonalization == 0) // then use purification
    DensFromFock.set_use_purification();
  else
    DensFromFock.unset_use_purification();

  // purification settings
  if(DensFromFock.get_use_purification() > 0)
    {
      DensFromFock.set_purification_limits(scfopts.purification_subspace_err_limit,
					   scfopts.purification_eigvalue_err_limit, 
					   scfopts.puri_eig_acc_factor_for_guess);

      if(scfopts.purification_with_acceleration > 0)
	DensFromFock.set_use_acceleration();
      else
	DensFromFock.unset_use_acceleration();

      if(scfopts.use_new_stopping_criterion > 0)
	DensFromFock.set_use_new_stopping_criterion();
      else
	DensFromFock.unset_use_new_stopping_criterion();
    }


  if(scfopts.use_diag_on_error > 0)
    DensFromFock.set_use_diag_on_error();
  else
    DensFromFock.unset_use_diag_on_error();

  if(scfopts.use_diag_on_error_guess > 0)
    DensFromFock.set_use_diag_on_error_guess();
  else
    DensFromFock.unset_use_diag_on_error_guess();




  // diagonalization settings
  if(scfopts.use_diagonalization > 0)
    DensFromFock.set_use_diagonalization();
  else
    DensFromFock.unset_use_diagonalization();
  
  // may be needed if scfopts.use_diag_on_error is set
  DensFromFock.set_diagonalization_params(scfopts.electronic_temperature,
					  S_symm);

  if(scfopts.use_diagonalization > 0 && scfopts.store_all_eigenvalues_to_file > 0)
    DensFromFock.set_store_all_eigenvalues_to_file();
  else
    DensFromFock.unset_store_all_eigenvalues_to_file();


  if(scfopts.save_permuted_F_matrix_in_bin > 0)
    DensFromFock.set_save_permuted_F_matrix_in_bin();
  else
    DensFromFock.unset_save_permuted_F_matrix_in_bin();
}


SCF_general::~SCF_general()
{
  delete curr_cycle_stats;
}


ergo_real SCF_general::GetEuclideanNormOfMatrix(const symmMatrix & A)
{
  ergo_real acc = template_blas_sqrt(mat::getMachineEpsilon<ergo_real>());
  return A.eucl(acc);
}


void SCF_general::get_overlap_matrix(symmMatrix & S)
{
  S_symm.readFromFile();
  S = S_symm;
  S_symm.writeToFile();
}


void SCF_general::get_invCholFactor_matrix(triangMatrix & invCholFactor_)
{
  invCholFactor.readFromFile();
  invCholFactor_ = invCholFactor;
  invCholFactor.writeToFile();
}


void SCF_general::get_H_core_matrix(symmMatrix & H_core)
{
  H_core_Matrix.readFromFile();
  H_core = H_core_Matrix;
  H_core_Matrix.writeToFile();
}


void SCF_general::get_energy(ergo_real & E, ergo_real & E_nuclear)
{
  E = energy;
  E_nuclear = nuclearEnergy;
}


void SCF_general::do_SCF_iterations()
{
  Util::TimeMeter timeMeterTot;
  do_output(LOG_CAT_INFO, LOG_AREA_SCF, "SCF_general::do_SCF_iterations");

  // Initialize DIIS
  if(DIIS == NULL)
    throw "ERROR: (DIIS == NULL)";
  if(DIIS->Initialize(scfopts.max_no_of_diis_matrices) != 0)
    throw "Error in DIIS->Initialize";

  initialize_matrices();

  if(J_K_params.threshold_J <= 0 || J_K_params.threshold_K <= 0)
    throw "Error in SCF_general::do_SCF_iterations: (J_K_params.threshold_J <= 0 || J_K_params.threshold_K <= 0).";

  // Check that parameters are reasonable, even number of electrons for restricted etc.
  check_params();

  // set up starting guess
  get_starting_guess_density();

  if(scfopts.spin_flip_atom_count > 0)
    do_spin_flip(scfopts.spin_flip_atom_count);

  if(scfopts.starting_guess_disturbance > 0)
    add_random_disturbance_to_starting_guess();

  if(scfopts.write_guess_density_only == 1) {
    write_density_to_file();
    do_output(LOG_CAT_INFO, LOG_AREA_SCF, "throwing exception after write_density_to_file.");
    throw "exiting after scfopts.write_guess_density_only";
  }

  if(scfopts.output_density_images_only == 1) {
    output_density_images();
    do_output(LOG_CAT_INFO, LOG_AREA_SCF, "throwing exception after output_density_images.");
    throw "exiting after scfopts.output_density_images_only";
  }


  // Use at least two iterations if disimple_starting_guess used.
  int min_number_of_iterations = scfopts.min_number_of_iterations;
  if(scfopts.use_simple_starting_guess && min_number_of_iterations < 2)
    min_number_of_iterations = 2;

  ergo_real stepLength = scfopts.step_length_start;
  ergo_real best_energy_so_far = 0;
  int step = 0;
  SCF_step = 0;
  int noOfFailuresInARow = 0;
  int restartCount = 0;
  int noOfImprovementsInARow = 0;
  int diisUsedInLastIteration = 0;

  curr_subspace_diff = 0;

  initialize_homo_lumo_limits();

  // The different Fockmatrix objects are empty at this point,
  // But we write them to file because they are supposed to be on file 
  // in the beginning of each SCF cycle.
  write_matrices_to_file();


  output_current_memory_usage(LOG_AREA_SCF, "before main SCF loop");

  Util::TimeMeter timeMeterScfMainLoop;
  
  // main SCF loop
  while(1)
    {
      curr_cycle_stats = new SCF_statistics;
      curr_cycle_stats->start_timer("scf_cycle_time");
      curr_cycle_stats->add_value("no_of_basis_func", basisInfo.noOfBasisFuncs);
      curr_cycle_stats->add_value("sparse_matrix_block_size", matOpts.sparse_matrix_block_size);
      step++;
      SCF_step++;
      curr_cycle_stats->add_value("scf_cycle", step);
      char infoString[888];
      sprintf(infoString, "Beginning of SCF cycle %i: ", step);
      do_output_time(LOG_CAT_INFO, LOG_AREA_SCF, infoString);

      output_current_memory_usage(LOG_AREA_SCF, infoString);

      Util::TimeMeter timeMeterStep;

      save_density_as_prevdens();

      get_2e_part_and_energy();

      //if(scfopts.use_artificial_subspace_disturbances == 1)
      //disturb_fock_matrix(curr_subspace_diff * scfopts.subspace_factor_fock);

      // Now we have created Fock matrix (or matrices), and written to file. Memory usage should be the same as before.
      output_current_memory_usage(LOG_AREA_SCF, "After get_2e_part_and_energy");

      output_sparsity_S_F_D(*curr_cycle_stats);

      double virtMem = 0, resMem = 0, virtPeakMem = 0;
      get_memory_usage_by_procfile(&virtMem, &resMem, &virtPeakMem);
      curr_cycle_stats->add_value("peak_virt_mem_usage_GB", virtPeakMem);
      

      calculate_energy();

      
      do_output(LOG_CAT_INFO, LOG_AREA_SCF, "nuclearEnergy, energy_2el, energy = %f, %f, %f", 
		(double)nuclearEnergy, (double)energy_2el, (double)energy);
      // ELIAS NOTE 2014-01-01: FIXME: consider adding another output message here showing the "electronic energy" so that the difference between "electronic energy" and "total energy" becomes more clear.
      if( step > 2)
	do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Energy %3i = %22.11f  ( diff %22.15f )", step, (double)energy, (double)(energy-best_energy_so_far));
      else
	do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Energy %3i = %22.11f", step, (double)energy);

      if(scfopts.compute_core_density == 1 && step > 1) {
	do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Valence-only energy %3i  = %22.11f", step, (double)energy_of_valence);
	do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Reference energy    %3i  = %22.11f", step, (double)energy_reference);
      }

      output_current_memory_usage(LOG_AREA_SCF, "After computing energy");

      curr_cycle_stats->start_timer("get_FDSminusSDF");
      Util::TimeMeter timeMeterFDSminusSDF;
      get_FDSminusSDF();
      timeMeterFDSminusSDF.print(LOG_AREA_SCF, "get_FDSminusSDF");
      output_current_memory_usage(LOG_AREA_SCF, "After computing FDS-SDF");
      curr_cycle_stats->stop_timer("get_FDSminusSDF");

      Util::TimeMeter timeMeterGerErrorMeasure;
      get_error_measure();
      timeMeterGerErrorMeasure.print(LOG_AREA_SCF, "get_error_measure");
      output_current_memory_usage(LOG_AREA_SCF, "After computing error measure");

      // Check if converged
      if(scfopts.use_artificial_subspace_disturbances == 1 && step > 1 && curr_subspace_diff < 1e-6)
	{
	  do_output(LOG_CAT_RESULTS, LOG_AREA_SCF, "CONVERGED due to curr_subspace_diff after %3i iterations.", step);
	  do_output(LOG_CAT_RESULTS, LOG_AREA_SCF, "FINAL ENERGY: %22.11f", (double)energy);
	  report_final_results();
	  break;
	}
      if(errorMeasure < scfopts.convergence_threshold && step >= min_number_of_iterations)
	{
	  // Write Fock matrix in matrix market format in the last SCF cycle
	  if ( scfopts.create_mtx_files_F == 1 )
	    create_mtx_files_F( step );

	  do_output(LOG_CAT_RESULTS, LOG_AREA_SCF, "CONVERGED after %3i iterations.", step);
	  do_output(LOG_CAT_RESULTS, LOG_AREA_SCF, "FINAL ENERGY: %22.11f", (double)energy);
	  report_final_results();
	  break;
	}

      // Check if max number of iterations reached
      if(scfopts.max_number_of_iterations > 0 && step >= scfopts.max_number_of_iterations)
	{
	  // Write Fock matrix in matrix market format in the last SCF cycle
	  if ( scfopts.create_mtx_files_F == 1 )
	    create_mtx_files_F( step );

	  do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Maximum number of SCF iterations reached. Breaking SCF procedure.");
	  do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Gave up after %i iterations.", step);
	  break;
	}

      

      if(step == 1)
        {
          // first time
	  add_to_DIIS_list();
        }
      else
        {
          // not first time
          if((energy < best_energy_so_far) && 
	     (step > noOfImprovementsInARow+3) && 
	     (noOfImprovementsInARow < scfopts.no_of_impr_req_for_diis || 
	      errorMeasure > scfopts.error_maxabs_for_diis) && 
	     !(diisUsedInLastIteration == 1 && noOfImprovementsInARow > 1) &&
	     !(scfopts.use_diis_always == 1))
            {
              noOfImprovementsInARow++;
              do_output(LOG_CAT_INFO, LOG_AREA_SCF, "the energy got better, "
			"but we do not dare to try DIIS yet, noOfImprovementsInARow = %i", 
			noOfImprovementsInARow);
              best_energy_so_far = energy;
              noOfFailuresInARow = 0;

	      update_best_fock_so_far();
	      
              do_output(LOG_CAT_INFO, LOG_AREA_SCF, 
			"mixing best Fock matrix so far with next one, stepLength = %10.6f", 
			(double)stepLength);
	      combine_old_fock_matrices(stepLength);
	      	      
              diisUsedInLastIteration = 0;
              stepLength *= 1.1;
              do_output(LOG_CAT_INFO, LOG_AREA_SCF, 
			"increased steplength by factor 1.1, stepLength = %10.6f", (double)stepLength);
            }
          else if(step <= scfopts.no_of_careful_first_scf_steps)
	    {
	      // "careful" option chosen: in this case we do not use
	      // DIIS for the early steps. Can be useful when the
	      // starting guess is very bad.
              do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Not considering DIIS now because 'careful' option "
			"chosen, no_of_careful_first_scf_steps = %2d", scfopts.no_of_careful_first_scf_steps);
	      /* Elias note 2010-05-12: added || step == 2 in this if
		 statement condition to handle the case when
		 no_of_careful_first_scf_steps is used and the energy
		 increased in step 2, which heppened for the Umeda
		 protein molecule.  */
	      if(energy < best_energy_so_far || step == 2) {
		best_energy_so_far = energy;
		update_best_fock_so_far();
		stepLength *= 1.1;
		do_output(LOG_CAT_INFO, LOG_AREA_SCF, 
			  "increased steplength by factor 1.1, stepLength = %10.6f", (double)stepLength);
	      }
	      else {
		// Energy got worse.
		noOfImprovementsInARow = 0;
		noOfFailuresInARow++;
		do_output(LOG_CAT_INFO, LOG_AREA_SCF, "restarting DIIS because energy did not improve.");
		clear_diis_list();
		ergo_real newStepLength = stepLength * 0.5;
		do_output(LOG_CAT_INFO, LOG_AREA_SCF, "changing stepLength from %10.6f to %10.6f", 
			  (double)stepLength, (double)newStepLength);
		stepLength = newStepLength;
	      }
              do_output(LOG_CAT_INFO, LOG_AREA_SCF, 
			"mixing best Fock matrix so far with next one, stepLength = %10.6f", 
			(double)stepLength);
	      combine_old_fock_matrices(stepLength);
              diisUsedInLastIteration = 0;
	    }
          else if(step == 2 || energy < best_energy_so_far || scfopts.use_diis_always == 1)
            {
              if(step > 2 && energy < best_energy_so_far)
                noOfImprovementsInARow++;
              // energy got better
              noOfFailuresInARow = 0;
              best_energy_so_far = energy;
      
	      update_best_fock_so_far();

              diisUsedInLastIteration = 1;

	      add_to_DIIS_list();
	      
	      do_output(LOG_CAT_INFO, LOG_AREA_SCF, "using DIIS to get combined Fock matrix, "
			"number of iters used for DIIS: %2i", DIIS->GetNoOfIters());
	      
	      use_diis_to_get_new_fock_matrix();
            }
          else
            {
              // energy got worse
	      if(scfopts.break_on_energy_increase == 1)
		{
		  do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Energy increased. Breaking SCF.");
		  do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Stopped SCF after %i iterations.", step);
		  break;
		}
              if(stepLength < scfopts.step_length_giveup)
                {
                  if(restartCount > scfopts.max_restart_count)
                    {
                      do_output(LOG_CAT_INFO, LOG_AREA_SCF, 
				"The energy does not seem to get any lower. We give up!");
                      do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Gave up after %i iterations.", step);
                      break;
                    }
                  restartCount++;
                  stepLength = scfopts.step_length_start;
                  noOfFailuresInARow = 0;
                  do_output(LOG_CAT_INFO, LOG_AREA_SCF, "reset stepLength to %10.6f, restartCount = %i", 
			    (double)scfopts.step_length_start, restartCount);
                }
              noOfImprovementsInARow = 0;
              noOfFailuresInARow++;
              do_output(LOG_CAT_INFO, LOG_AREA_SCF, "restarting DIIS because energy did not improve.");
	      clear_diis_list();
	      
              if(diisUsedInLastIteration == 0)
		{
		  ergo_real newStepLength = stepLength * 0.5;
		  do_output(LOG_CAT_INFO, LOG_AREA_SCF, "changing stepLength from %10.6f to %10.6f", 
			    (double)stepLength, (double)newStepLength);
		  stepLength = newStepLength;
		}
              do_output(LOG_CAT_INFO, LOG_AREA_SCF, 
			"mixing best Fock matrix so far with next one, stepLength = %10.6f", 
			(double)stepLength);
	      combine_old_fock_matrices(stepLength);

              diisUsedInLastIteration = 0;
            }
        }

      output_current_memory_usage(LOG_AREA_SCF, "After creating lin comb F");

      // Free memory used by Err_sparse
      Util::TimeMeter timeMeterClearErrorMatrices;
      clear_error_matrices();
      timeMeterClearErrorMatrices.print(LOG_AREA_SCF, "clear_error_matrices");
      output_current_memory_usage(LOG_AREA_SCF, "After clear_error_matrices");

      // FIXME: Compare F and Fprev here to get info about gap of
      // F? Such info will be needed as input to get_dens_from_fock?

      Util::TimeMeter timeMeterSaveFockAsFprev;
      save_current_fock_as_fprev();
      timeMeterSaveFockAsFprev.print(LOG_AREA_SCF, "save_current_fock_as_fprev");

      curr_cycle_stats->start_timer("get_new_density_matrix");
      Util::TimeMeter timeMeterGetNewDensityMatrix;
      get_new_density_matrix();
      timeMeterGetNewDensityMatrix.print(LOG_AREA_SCF, "get_new_density_matrix");
      curr_cycle_stats->stop_timer("get_new_density_matrix");
      
      // At this point a new density matrix has just been computed, so the electronic entropy term has also been computed in the nonzero-temperature case.
      if(scfopts.electronic_temperature > 0) {
	do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Electronic temperature: %22.11f a.u. = %22.2f Kelvin", 
		  (double)scfopts.electronic_temperature, (double)scfopts.electronic_temperature/UNIT_one_Kelvin);
	do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Electronic entropy term: %22.11f, energy with entropy term included: %22.11f", 
		  (double)electronicEntropyTerm, (double)(energy + electronicEntropyTerm));
      }

      if(step > 1)
	report_density_difference();
      
      if(scfopts.use_artificial_subspace_disturbances == 1 && step > 2)
	disturb_dens_matrix_exact(curr_subspace_diff * scfopts.subspace_factor_dens);
      //disturb_dens_matrix(curr_subspace_diff * scfopts.subspace_factor_dens);

      if(scfopts.use_artificial_subspace_disturbances == 1)
	update_subspace_diff();

      if(scfopts.output_density_at_every_step == 1) {
	Util::TimeMeter timeMeterWriteDensityToFile;
	output_current_memory_usage(LOG_AREA_SCF, "before write_density_to_file()");
	write_density_to_file();
	output_current_memory_usage(LOG_AREA_SCF, "after  write_density_to_file()");
	timeMeterWriteDensityToFile.print(LOG_AREA_SCF, "write_density_to_file");
      }

      if ( scfopts.create_mtx_files_F == 1 )
	// Write Fock matrix in matrix market format
	create_mtx_files_F( step );
      if ( scfopts.create_mtx_files_D == 1 )
	// Write Fock matrix in matrix market format
	create_mtx_files_D( step );

      if ( scfopts.output_homo_and_lumo_eigenvectors ) {
      	// Write homo and lumo eigenvectors to file
      	create_eigenvectors_files();
      	create_gabedit_file();
      }
            
      do_output(LOG_CAT_INFO, LOG_AREA_SCF, "SCF cycle %3i finished.", step);
      char tempString[88];
      sprintf(tempString, "SCF cycle %3i", step);
      timeMeterStep.print(LOG_AREA_SCF, tempString);
      curr_cycle_stats->stop_timer("scf_cycle_time");
      std::stringstream ss;
      ss << "scf_cycle_" << step;
      if(scfopts.output_statistics_mfiles)
	curr_cycle_stats->output_mfile( ss.str() );
      delete curr_cycle_stats;
      curr_cycle_stats = NULL; // since curr_cycle_stats is deleted in destructor, we need to set to null here to avoid double-delete if we exit loop in some unusual way.
    } // END WHILE main SCF loop

  timeMeterScfMainLoop.print(LOG_AREA_SCF, "Main SCF loop");
  output_current_memory_usage(LOG_AREA_SCF, "after main SCF loop");
  std::string allocStatsStr = mat::AllocatorManager<ergo_real>::instance().getStatistics();
  do_output(LOG_CAT_INFO, LOG_AREA_SCF, "After main SCF loop: %s", allocStatsStr.c_str());

  if(scfopts.output_density_at_every_step == 1 && step == 1) {
    Util::TimeMeter timeMeterWriteDensityToFile;
    output_current_memory_usage(LOG_AREA_SCF, "before write_density_to_file()");
    write_density_to_file();
    output_current_memory_usage(LOG_AREA_SCF, "after  write_density_to_file()");
    timeMeterWriteDensityToFile.print(LOG_AREA_SCF, "write_density_to_file");
  }

  compute_dipole_moment();

  if(scfopts.output_mulliken_pop == 1)
    do_mulliken_pop_stuff();

  if(scfopts.compute_gradient_fixeddens == 1)
    compute_gradient_fixeddens();

  if(scfopts.save_full_matrices_for_matlab == 1)
    save_full_matrices_for_matlab();
  
  if(scfopts.save_final_potential == 1)
    save_final_potential();
  
  if(scfopts.output_expected_values_pos_operator == 1)
    output_expected_values_pos_operator();

  if(scfopts.output_density_images == 1)
    output_density_images();
  
  if(scfopts.write_diag_dens_to_file == 1)
    write_diag_dens_to_file();

  do_output(LOG_CAT_INFO, LOG_AREA_SCF, "SCF_general::do_SCF_iterations finished.");
  timeMeterTot.print(LOG_AREA_SCF, "SCF_general::do_SCF_iterations");
}