1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file SCF_restricted.cc
@brief Class for self-consistent field (SCF) procedure;
spin-restricted case.
@author: Elias Rudberg <em>responsible</em>.
*/
#include <sstream>
#include "SCF_restricted.h"
#include "output.h"
#include "scf_utils.h"
#include "utilities.h"
#include "diis_restricted.h"
#include "density_projection.h"
#include "density_description_file.h"
#include "matrix_utilities.h"
#include "machine_epsilon.h"
#include "units.h"
#include "atom_labels.h"
#include "integral_matrix_wrappers.h"
#include "dipole_moment.h"
SCF_restricted::SCF_restricted(const Molecule& molecule_,
const Molecule& extraCharges_,
const BasisInfoStruct& basisInfo_,
const IntegralInfo& integralInfo_,
const char *guessDmatFileNamePtr,
const JK::Params& J_K_paramsPtr,
const Dft::GridParams& gridParams_,
const SCF::Options& scfopts,
const SCF::MatOptions& matOpts_,
ergo_real threshold_integrals_1el_input)
: SCF_general(molecule_,
extraCharges_,
basisInfo_,
integralInfo_,
guessDmatFileNamePtr,
J_K_paramsPtr,
gridParams_,
scfopts,
matOpts_,
threshold_integrals_1el_input)
{
DIIS = new DIISManagerRestricted;
DensFromFock.do_restricted_calculations(); // set factor = 2
DensFromFock.set_no_occupied_orbs(noOfElectrons / 2);
}
SCF_restricted::~SCF_restricted()
{
delete ((DIISManagerRestricted *)DIIS);
}
void SCF_restricted::get_Fock_matrix(symmMatrix& FockMatrix_)
{
FockMatrix.readFromFile();
FockMatrix_ = FockMatrix;
FockMatrix.writeToFile();
}
void SCF_restricted::get_density_matrix(symmMatrix& densityMatrix_)
{
densityMatrix.readFromFile();
densityMatrix_ = densityMatrix;
densityMatrix.writeToFile();
}
void SCF_restricted::initialize_matrices()
{
densityMatrix.resetSizesAndBlocks(matOpts.size_block_info,
matOpts.size_block_info);
densityMatrix_core.resetSizesAndBlocks(matOpts.size_block_info, matOpts.size_block_info);
twoel_matrix_core.resetSizesAndBlocks(matOpts.size_block_info, matOpts.size_block_info);
FockMatrix.resetSizesAndBlocks(matOpts.size_block_info,
matOpts.size_block_info);
Fprev.resetSizesAndBlocks(matOpts.size_block_info,
matOpts.size_block_info);
Dprev.resetSizesAndBlocks(matOpts.size_block_info,
matOpts.size_block_info);
F_ort_prev.resetSizesAndBlocks(matOpts.size_block_info,
matOpts.size_block_info);
// D_ort_prev.resetSizesAndBlocks(matOpts.size_block_info,
// matOpts.size_block_info);
bestFockMatrixSoFar.resetSizesAndBlocks(matOpts.size_block_info,
matOpts.size_block_info);
bestFockMatrixSoFar2.resetSizesAndBlocks(matOpts.size_block_info,
matOpts.size_block_info);
ErrorMatrix.resetSizesAndBlocks(matOpts.size_block_info,
matOpts.size_block_info);
}
void SCF_restricted::check_params()
{
if (noOfElectrons % 2 != 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_SCF, "error: odd number of electrons in restricted calculation");
throw "error: odd number of electrons in restricted calculation";
}
}
void SCF_restricted::get_starting_guess_density()
{
// set up starting guess
int n = basisInfo.noOfBasisFuncs;
DensFromFock.set_SCF_step(SCF_step);
if (guessDmatFileName != NULL)
{
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "getting starting guess density from file '%s'", guessDmatFileName);
int noOfDensityMatrices = 1;
symmMatrix *matrixList[2];
matrixList[0] = &densityMatrix;
if (load_density_and_project_sparse(DensFromFock,
guessDmatFileName,
noOfDensityMatrices,
&integralInfo,
basisInfo,
S_symm,
matrixList,
&noOfElectrons,
matOpts.size_block_info,
matOpts.permutationHML,
matOpts.sparse_threshold) != 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_SCF, "error in load_density_and_project_sparse");
throw "error in load_density_and_project_sparse";
}
}
else
{
if (scfopts.use_simple_starting_guess == 1)
{
if (get_simple_starting_guess_sparse(n, noOfElectrons, densityMatrix) != 0)
{
throw "error in get_simple_starting_guess_sparse";
}
densityMatrix.writeToFile();
}
else if (scfopts.use_diag_guess_from_file == 1)
{
if (get_diag_matrix_from_file(n, densityMatrix, "diagdens.txt",
matOpts.permutationHML) != 0)
{
throw "error in get_diag_matrix_from_file";
}
densityMatrix.writeToFile();
}
else
{
do_output(LOG_CAT_INFO, LOG_AREA_SCF,
"calling get_dens_from_fock to diagonalize H_core for starting guess, n = %i, sparse_threshold = %g",
n, (double)matOpts.sparse_threshold);
symmMatrix F_ort_prev_dummy;
F_ort_prev_dummy.resetSizesAndBlocks(matOpts.size_block_info,
matOpts.size_block_info);
F_ort_prev_dummy.writeToFile();
densityMatrix.writeToFile();
DensFromFock.clean_eigs_intervals();
int use_diag_on_error = DensFromFock.get_use_diag_on_error();
if (DensFromFock.get_use_diag_on_error_guess() == 1)
{
DensFromFock.set_use_diag_on_error();
}
if (DensFromFock.get_dens_from_fock(H_core_Matrix,
densityMatrix,
F_ort_prev_dummy) != 0)
{
throw "SCF_restricted::get_starting_guess_density: Error in get_dens_from_fock_general";
}
if (use_diag_on_error != 1)
{
DensFromFock.unset_use_diag_on_error();
}
} // END ELSE use H_core
} // END ELSE no dmat given
densityMatrix.readFromFile();
output_sparsity_symm(n, densityMatrix, "starting guess density matrix");
densityMatrix.writeToFile();
densityMatrix_core.writeToFile(); // densityMatrix_core (if used) also needs to be written to file
}
void SCF_restricted::add_random_disturbance_to_starting_guess()
{
if (scfopts.sg_disturb_specific_elements > SCF::DISTURB_ELEMENT_MAX_COUNT)
{
throw "Error in SCF_restricted::add_random_disturbance_to_starting_guess: (scfopts.sg_disturb_specific_elements > SCF::DISTURB_ELEMENT_MAX_COUNT)";
}
int n = basisInfo.noOfBasisFuncs;
densityMatrix.readFromFile();
add_disturbance_to_matrix(n,
densityMatrix,
scfopts.starting_guess_disturbance,
scfopts.sg_disturb_specific_elements,
scfopts.disturbedElementIndexVector,
matOpts.permutationHML);
densityMatrix.writeToFile();
}
void SCF_restricted::initialize_homo_lumo_limits()
{
intervalType hugeInterval(-1e22, 1e22);
homoInterval_F_ort_prev = hugeInterval;
lumoInterval_F_ort_prev = hugeInterval;
homoInterval_Fprev = hugeInterval;
lumoInterval_Fprev = hugeInterval;
}
void SCF_restricted::write_matrices_to_file()
{
FockMatrix.writeToFile();
Fprev.writeToFile();
Dprev.writeToFile();
bestFockMatrixSoFar.writeToFile();
bestFockMatrixSoFar2.writeToFile();
F_ort_prev.writeToFile();
}
static void output_diff_norm_values(symmMatrix const& F1,
symmMatrix const& F2,
ergo_real acc,
const char *name)
{
ergo_real E_norm_frob = symmMatrix::frob_diff(F1, F2);
Util::TimeMeter timeMeterMixedDiff;
ergo_real E_norm_mixed = symmMatrix::mixed_diff(F1, F2, acc);
timeMeterMixedDiff.print(LOG_AREA_DENSFROMF, "symmMatrix::mixed_diff");
Util::TimeMeter timeMeterEuclDiff;
ergo_real E_norm_eucl = symmMatrix::eucl_diff(F1, F2, acc);
timeMeterEuclDiff.print(LOG_AREA_DENSFROMF, "symmMatrix::eucl_diff ");
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Nor of error matrix for '%s':", name);
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "frob : %22.15f", (double)E_norm_frob);
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "mixed: %22.15f", (double)E_norm_mixed);
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "eucl: %22.15f", (double)E_norm_eucl);
}
static ergo_real get_eucl_diff_with_adapted_accuracy(int n,
const symmMatrix & F_w,
const symmMatrix & F_ort_prev_w,
ergo_real acc) {
// The symmMatrix::eucl_diff() call may be slow, we use a maxIter param to detect if it is a difficult case, and in such cases use a larger acc value.
int maxIterForEuclDiff = std::max(n / 10, 500);
ergo_real maxEigValMovement_eucl = -1; // Value will be set in try/catch code below.
try {
Util::TimeMeter timeMeterEuclDiff;
maxEigValMovement_eucl = symmMatrix::eucl_diff(F_w, F_ort_prev_w, acc, maxIterForEuclDiff) + acc;
timeMeterEuclDiff.print(LOG_AREA_SCF, "symmMatrix::eucl_diff for maxEigValMovement_eucl ");
}
catch(...) {
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "symmMatrix::eucl_diff() for maxEigValMovement_eucl failed for maxIterForEuclDiff=%d. Calling eucl_diff() again with lower accuracy requirement sqrt(acc).",
maxIterForEuclDiff);
ergo_real acc2 = template_blas_sqrt(acc);
Util::TimeMeter timeMeterEuclDiff;
maxEigValMovement_eucl = symmMatrix::eucl_diff(F_w, F_ort_prev_w, acc2) + acc2;
timeMeterEuclDiff.print(LOG_AREA_SCF, "symmMatrix::eucl_diff for maxEigValMovement_eucl ");
}
return maxEigValMovement_eucl;
}
void SCF_restricted::get_2e_part_and_energy()
{
densityMatrix.readFromFile();
densityMatrix_core.readFromFile();
bool scan_do_invcholfactor_transf = (bool)scfopts.scan_do_invcholfactor_transf;
if (scfopts.do_acc_scan_J)
{
do_acc_scan_J(densityMatrix,
integralInfo,
basisInfo,
invCholFactor,
scan_do_invcholfactor_transf,
J_K_params,
matOpts.size_block_info,
matOpts.permutationHML,
scfopts.scan_no_of_steps,
scfopts.scan_start_thresh,
scfopts.scan_step_factor);
}
if (scfopts.do_acc_scan_K)
{
do_acc_scan_K(densityMatrix,
integralInfo,
basisInfo,
invCholFactor,
scan_do_invcholfactor_transf,
CAM_params,
J_K_params,
matOpts.size_block_info,
matOpts.permutationHML,
matOpts.inversePermutationHML,
scfopts.scan_no_of_steps,
scfopts.scan_start_thresh,
scfopts.scan_step_factor);
}
if (scfopts.do_acc_scan_Vxc)
{
do_acc_scan_Vxc(densityMatrix,
integralInfo,
basisInfo,
molecule,
gridParams,
noOfElectrons,
invCholFactor,
scan_do_invcholfactor_transf,
matOpts.size_block_info,
matOpts.permutationHML,
matOpts.inversePermutationHML,
scfopts.scan_no_of_steps,
scfopts.scan_start_thresh,
scfopts.scan_step_factor);
}
symmMatrix G;
G.resetSizesAndBlocks(matOpts.size_block_info,
matOpts.size_block_info);
if (get_2e_matrix_and_energy_sparse(basisInfo,
molecule,
integralInfo,
G,
densityMatrix,
J_K_params,
CAM_params,
gridParams,
scfopts.use_dft,
&energy_2el, noOfElectrons,
matOpts.size_block_info,
matOpts.permutationHML,
matOpts.inversePermutationHML,
0,
J_matrix,
K_matrix,
Fxc_matrix,
*curr_cycle_stats) != 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_SCF, "error in get_2e_matrix_and_energy_sparse");
throw "error in get_2e_matrix_and_energy_sparse";
}
if (scfopts.compute_core_density == 1)
{
// Get energy_2el_valence and H_matrix_core, but only if densityMatrix_core is nonzero (it is zero the first time, then we just skip).
if (densityMatrix_core.frob() != 0)
{
// Get energy_2el_valence
{
symmMatrix densityMatrix_valence(densityMatrix);
densityMatrix_valence += (ergo_real) - 1 * densityMatrix_core;
symmMatrix G_valence;
G_valence.resetSizesAndBlocks(matOpts.size_block_info, matOpts.size_block_info);
symmMatrix J_matrix_valence;
symmMatrix K_matrix_valence;
symmMatrix Fxc_matrix_valence;
SCF_statistics curr_cycle_stats_dummy;
int no_of_valence_electrons = noOfElectrons - scfopts.no_of_core_electrons;
if (get_2e_matrix_and_energy_sparse(basisInfo,
molecule,
integralInfo,
G_valence,
densityMatrix_valence,
J_K_params,
CAM_params,
gridParams,
scfopts.use_dft,
&energy_2el_valence, no_of_valence_electrons,
matOpts.size_block_info,
matOpts.permutationHML,
matOpts.inversePermutationHML,
0,
J_matrix_valence,
K_matrix_valence,
Fxc_matrix_valence,
curr_cycle_stats_dummy) != 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_SCF, "Error in get_2e_matrix_and_energy_sparse for densityMatrix_valence.");
throw "Error in get_2e_matrix_and_energy_sparse for densityMatrix_valence.";
}
}
// Compute J_matrix_core
{
symmMatrix J_matrix_core;
symmMatrix K_matrix_core;
symmMatrix Fxc_matrix_core;
SCF_statistics curr_cycle_stats_dummy;
energy_2el_core = 0;
if (get_2e_matrix_and_energy_sparse(basisInfo,
molecule,
integralInfo,
twoel_matrix_core,
densityMatrix_core,
J_K_params,
CAM_params,
gridParams,
scfopts.use_dft,
&energy_2el_core, scfopts.no_of_core_electrons,
matOpts.size_block_info,
matOpts.permutationHML,
matOpts.inversePermutationHML,
0,
J_matrix_core,
K_matrix_core,
Fxc_matrix_core,
curr_cycle_stats_dummy) != 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_SCF, "Error in get_2e_matrix_and_energy_sparse for densityMatrix_core.");
throw "Error in get_2e_matrix_and_energy_sparse for densityMatrix_core.";
}
}
}
}
densityMatrix.writeToFile();
densityMatrix_core.writeToFile();
// Check that G matrix is free from "inf", "nan" etc.
if (check_if_matrix_contains_strange_elements(G, matOpts.inversePermutationHML))
{
throw std::runtime_error("error in SCF_restricted::get_2e_part_and_energy(): G matrix contains inf or nan.");
}
// calculate Fock matrix F = H_core + G
H_core_Matrix.readFromFile();
FockMatrix.readFromFile();
FockMatrix = H_core_Matrix + G;
H_core_Matrix.writeToFile();
G.clear();
// Save a copy of FockMatrix before truncation if verification requested.
symmMatrix FockMatrixBeforeTruncation;
if (scfopts.do_f_thresh_verification == 1)
{
FockMatrixBeforeTruncation = FockMatrix;
}
// Do truncation of FockMatrix taking into account gap of Fprev and norm of Z.
ergo_real gapOfFprevMin = lumoInterval_Fprev.low() - homoInterval_Fprev.upp();
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "About to truncate FockMatrix, gap of Fprev >= %22.11f", (double)gapOfFprevMin);
{
// Compare FockMatrix to Fprev to check how far eigenvalues can have moved.
Fprev.readFromFile();
ergo_real maxEigValMovement_frob = symmMatrix::frob_diff(FockMatrix, Fprev);
ergo_real acc = template_blas_sqrt(get_machine_epsilon());
Util::TimeMeter timeMeterMixedDiff;
ergo_real maxEigValMovement_mixed = symmMatrix::mixed_diff(FockMatrix, Fprev, acc) + acc;
timeMeterMixedDiff.print(LOG_AREA_SCF, "symmMatrix::mixed_diff for F vs Fprev maxEigValMovement_mixed");
int n = basisInfo.noOfBasisFuncs;
ergo_real maxEigValMovement_eucl = get_eucl_diff_with_adapted_accuracy(n, FockMatrix, Fprev, acc);
Fprev.writeToFile();
// Increase HOMO/LUMO intervals so that they for sure contain the HOMO and LUMO eigenvalues of F_ort
intervalType homoInterval = homoInterval_Fprev;
intervalType lumoInterval = lumoInterval_Fprev;
homoInterval.increase(maxEigValMovement_eucl);
lumoInterval.increase(maxEigValMovement_eucl);
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "maxEigValMovement_frob = %22.11f", (double)maxEigValMovement_frob);
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "maxEigValMovement_mixed = %22.11f", (double)maxEigValMovement_mixed);
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "maxEigValMovement_eucl = %22.11f", (double)maxEigValMovement_eucl);
// Now we have homoInterval and lumoInterval valid for FockMatrix.
ergo_real gapMin = lumoInterval.low() - homoInterval.upp();
ergo_real gapMax = lumoInterval.upp() - homoInterval.low();
ergo_real threshold_1;
// Choose subspace error as for purification.
ergo_real subspaceThr_1 = 0.1 * scfopts.purification_subspace_err_limit;
// We consider the gap to be accurately known if the uncertainty is at most 10 %
if ((gapMin > 0) && ((gapMax - gapMin) / gapMin < 0.1))
{
// Gap is accurately known: we use gapMin
threshold_1 = subspaceThr_1 * gapMin / (1 + subspaceThr_1);
}
else
{
// Gap is not accurately known. To avoid choosing a very tight
// threshold value due to a small lower bound for the gap, we
// use the largest of 'gap_expected_lower_bound' and calculated
// 'gapMin':
threshold_1 = gapMin > scfopts.gap_expected_lower_bound ?
subspaceThr_1 * gapMin / (1 + subspaceThr_1) :
subspaceThr_1 * scfopts.gap_expected_lower_bound / (1 + subspaceThr_1);
}
/* Truncate matrix taking into account that we are in
* 'non-orthogonal basis', passing invCholFactor to thresh */
invCholFactor.readFromFile();
Util::TimeMeter timeMeterEuclThresh;
double nnzF_S_before_trunc_pc = (double)FockMatrix.nnz() * 100 / ((double)n * n);
ergo_real truncError_1 = FockMatrix.eucl_thresh(threshold_1, &invCholFactor);
double nnzF_S_after_trunc_pc = (double)FockMatrix.nnz() * 100 / ((double)n * n);
invCholFactor.writeToFile();
timeMeterEuclThresh.print(LOG_AREA_SCF, "FockMatrix.eucl_thresh() (with Z)");
do_output(LOG_CAT_INFO, LOG_AREA_SCF,
"Truncated FockMatrix (eucl with Z), selected threshold = %10.6g, returned error = %10.6g, nnz before = %3.4f %%, nnz after = %3.4f %%",
(double)threshold_1, (double)truncError_1, nnzF_S_before_trunc_pc, nnzF_S_after_trunc_pc);
this->curr_cycle_stats->add_value("investigation_nnz_percentage_F_S", nnzF_S_after_trunc_pc);
}
// FockMatrix.frob_thresh(matOpts.sparse_threshold);
if (scfopts.do_f_thresh_verification == 1)
{
Util::TimeMeter timeMeterThreshVerification;
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "do_f_thresh_verification requested, computing error matrices...");
symmMatrix F1(FockMatrixBeforeTruncation);
symmMatrix F2(FockMatrix);
ergo_real acc = template_blas_sqrt(get_machine_epsilon());
// First get norm of error matrix in non-orthogonal basis.
output_diff_norm_values(F1, F2, acc, "F in in non-orthogonal basis");
// Now get norm of error matrix in non-orthogonal basis.
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "do_f_thresh_verification requested, doing Z multiplications...");
invCholFactor.readFromFile();
Util::TimeMeter timeMeterZFZ1;
F1 = transpose(invCholFactor) * F1 * invCholFactor;
timeMeterZFZ1.print(LOG_AREA_DENSFROMF, "transpose(invCholFactor) * F1 * invCholFactor");
Util::TimeMeter timeMeterZFZ2;
F2 = transpose(invCholFactor) * F2 * invCholFactor;
timeMeterZFZ2.print(LOG_AREA_DENSFROMF, "transpose(invCholFactor) * F2 * invCholFactor");
invCholFactor.writeToFile();
// Now we have the matrix in orthogonal basis, before and after truncation.
output_diff_norm_values(F1, F2, acc, "F in in orthogonal basis");
timeMeterThreshVerification.print(LOG_AREA_SCF, "do_f_thresh_verification stuff");
}
FockMatrix.writeToFile();
}
void SCF_restricted::output_sparsity_S_F_D(SCF_statistics& stats)
{
int n = basisInfo.noOfBasisFuncs;
S_symm.readFromFile();
output_sparsity_symm(n, S_symm, "S");
stats.add_value("nnz_S", S_symm.nnz());
S_symm.writeToFile();
FockMatrix.readFromFile();
output_sparsity_symm(n, FockMatrix, "F");
stats.add_value("nnz_F", FockMatrix.nnz());
FockMatrix.writeToFile();
densityMatrix.readFromFile();
output_sparsity_symm(n, densityMatrix, "D");
stats.add_value("nnz_D", densityMatrix.nnz());
densityMatrix.writeToFile();
}
void SCF_restricted::calculate_energy()
{
// calculate energy
H_core_Matrix.readFromFile();
densityMatrix.readFromFile();
energy = symmMatrix::trace_ab(densityMatrix, H_core_Matrix) + energy_2el;
if (scfopts.compute_core_density == 1)
{
densityMatrix_core.readFromFile();
symmMatrix densityMatrix_valence(densityMatrix);
densityMatrix_valence += (ergo_real) - 1 * densityMatrix_core;
energy_of_valence = symmMatrix::trace_ab(densityMatrix_valence, H_core_Matrix) + symmMatrix::trace_ab(densityMatrix_valence, twoel_matrix_core) + energy_2el_valence;
energy_reference = symmMatrix::trace_ab(densityMatrix_core, H_core_Matrix) + energy_2el_core + nuclearEnergy;
densityMatrix_core.writeToFile();
}
densityMatrix.writeToFile();
H_core_Matrix.writeToFile();
energy += nuclearEnergy;
}
void SCF_restricted::get_FDSminusSDF()
{
int n = basisInfo.noOfBasisFuncs;
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "calling compute_FDSminusSDF_sparse, n = %i", n);
densityMatrix.readFromFile();
S_symm.readFromFile();
FockMatrix.readFromFile();
compute_FDSminusSDF_sparse(n, FockMatrix, densityMatrix, S_symm,
ErrorMatrix, matOpts.sparse_threshold);
S_symm.writeToFile();
FockMatrix.writeToFile();
densityMatrix.writeToFile();
// write to file and read back again to reduce memory fragmentation.
ErrorMatrix.writeToFile();
ErrorMatrix.readFromFile();
output_sparsity(n, ErrorMatrix, "FDS-SDF");
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "SCF_restricted::get_FDSminusSDF finished.");
}
void SCF_restricted::get_error_measure()
{
ergo_real error_maxabs = compute_maxabs_sparse(ErrorMatrix);
ergo_real error_frob = ErrorMatrix.frob();
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "maxabs FDS-SDF is %8.3g", (double)error_maxabs);
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "frob FDS-SDF is %8.3g", (double)error_frob);
errorMeasure = error_maxabs;
}
void SCF_restricted::add_to_DIIS_list()
{
FockMatrix.readFromFile();
if (((DIISManagerRestricted *)DIIS)->AddIterationToList(FockMatrix, ErrorMatrix) != 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_SCF, "error in DIIS AddIterationToList");
throw "error in DIIS AddIterationToList";
}
FockMatrix.writeToFile();
}
void SCF_restricted::update_best_fock_so_far()
{
Fprev.readFromFile();
bestFockMatrixSoFar.readFromFile();
bestFockMatrixSoFar = Fprev;
Fprev.writeToFile();
bestFockMatrixSoFar.writeToFile();
FockMatrix.readFromFile();
bestFockMatrixSoFar2.readFromFile();
bestFockMatrixSoFar2 = FockMatrix;
FockMatrix.writeToFile();
bestFockMatrixSoFar2.writeToFile();
}
void SCF_restricted::combine_old_fock_matrices(ergo_real stepLength)
{
bestFockMatrixSoFar.readFromFile();
bestFockMatrixSoFar2.readFromFile();
FockMatrix.readFromFile();
FockMatrix = 0;
FockMatrix += stepLength * bestFockMatrixSoFar2;
FockMatrix += (1 - stepLength) * bestFockMatrixSoFar;
FockMatrix.writeToFile();
bestFockMatrixSoFar.writeToFile();
bestFockMatrixSoFar2.writeToFile();
}
void SCF_restricted::use_diis_to_get_new_fock_matrix()
{
symmMatrix newFsymm;
if (((DIISManagerRestricted *)DIIS)->GetCombinedFockMatrix(newFsymm) != 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_SCF, "error in DIIS.GetCombinedFockMatrix");
throw "error in DIIS.GetCombinedFockMatrix";
}
FockMatrix.readFromFile();
FockMatrix = newFsymm;
FockMatrix.writeToFile();
}
void SCF_restricted::clear_diis_list()
{
((DIISManagerRestricted *)DIIS)->ClearList();
}
void SCF_restricted::clear_error_matrices()
{
ErrorMatrix.clear();
}
void SCF_restricted::save_current_fock_as_fprev()
{
// save current Fock matrix as Fprev
FockMatrix.readFromFile();
Fprev.readFromFile();
Fprev = FockMatrix;
FockMatrix.writeToFile();
Fprev.writeToFile();
}
void SCF_restricted::get_new_density_matrix()
{
int n = basisInfo.noOfBasisFuncs;
DensFromFock.set_SCF_step(SCF_step);
// As input to the density matrix construction routine, the default
// is to use FockMatrix. However, if shift_using_prev_density_matrix
// we use a modified matrix instead.
symmMatrix *F_effective = &FockMatrix;
symmMatrix F_modified;
if (scfopts.shift_using_prev_density_matrix != 0)
{
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Using shift_using_prev_density_matrix, shifting by %9.5f a.u. = %9.5f eV",
(double)scfopts.shift_using_prev_density_matrix, (double)scfopts.shift_using_prev_density_matrix / UNIT_one_eV);
F_modified = FockMatrix;
F_modified.readFromFile();
// Get matrix SDS
symmMatrix SDS(densityMatrix);
SDS.readFromFile();
transform_with_S(SDS);
// Use factor 0.5 since this is restricted case.
F_modified += (ergo_real) - 0.5 * scfopts.shift_using_prev_density_matrix * SDS;
F_modified.writeToFile();
F_effective = &F_modified;
}
DensFromFock.set_eigs_F_ort_prev(homoInterval_F_ort_prev, lumoInterval_F_ort_prev);
DensFromFock.clean_puri_stats();
DensFromFock.set_generate_figures();
// if eigenvectors are needed, set params
int use_init_guess = 0;
if ((scfopts.use_prev_vector_as_initial_guess == 1) &&
(scfopts.min_number_of_iterations-1 <= SCF_step) &&
(SCF_step > 1) &&
!eigVecUNOCC.empty() && !eigVecOCC.empty()) // ensure that we computed vectors in previous cycle
{
use_init_guess = 1;
}
// if we use new purification
if ((SCF_step > 1) &&
(scfopts.min_number_of_iterations-1 <= SCF_step) &&
(DensFromFock.get_use_purification() == 1) &&
(DensFromFock.get_output_homo_and_lumo_eigenvectors() == 1))
{
DensFromFock.compute_eigenvectors(scfopts.eigenvectors_method,
scfopts.eigenvectors_iterative_method,
scfopts.eigensolver_accuracy,
scfopts.eigensolver_maxiter,
use_init_guess,
scfopts.try_eigv_on_next_iteration_if_fail);
DensFromFock.compute_eigenvectors_extra(scfopts.puri_compute_eigv_in_each_iteration, scfopts.run_shift_and_square_method_on_F);
}
if (scfopts.create_checkpoints == 1)
{
Util::TimeMeter timeMeter;
generalVector * eigVecLUMO = NULL;
generalVector * eigVecHOMO = NULL;
if(eigVecOCC.size() >= 1) eigVecHOMO = &eigVecOCC[0];
if(eigVecUNOCC.size() >= 1) eigVecLUMO = &eigVecUNOCC[0];
DensFromFock.create_checkpoint(*F_effective, // should normally be same as Fprev now
F_ort_prev,
eigVecLUMO,
eigVecHOMO,
scfopts.checkpoint_IDstr);
timeMeter.print(LOG_AREA_SCF, "in SCF_restricted DensFromFock::create_checkpoint took");
}
if (DensFromFock.get_dens_from_fock(*F_effective, // should normally be same as Fprev now
densityMatrix,
F_ort_prev) != 0)
{
throw "SCF_restricted::get_new_density_matrix: Error in get_dens_from_fock";
}
// return empty vectors in case nothing is computed
DensFromFock.get_computed_eigenpairs(eigVecUNOCC, eigVecOCC, eigValUNOCC, eigValOCC);
DensFromFock.get_eigs_F_ort_prev(homoInterval_F_ort_prev, lumoInterval_F_ort_prev);
DensFromFock.get_eigs_Fprev(homoInterval_Fprev, lumoInterval_Fprev);
std::map<std::string, double> puri_stats;
DensFromFock.get_puri_stats(puri_stats);
this->curr_cycle_stats->add_values(puri_stats);
DensFromFock.unset_generate_figures();
electronicEntropyTerm = DensFromFock.get_result_entropy_term();
if (scfopts.compute_core_density == 1)
{
DensFromFock.clean_eigs_intervals();
if (DensFromFock.get_dens_from_fock(*F_effective,
densityMatrix_core,
F_ort_prev) != 0)
{
throw "SCF_restricted::get_new_density_matrix: Error in get_dens_from_fock for core density matrix.";
}
}
// Report sparsity of D and trace(DS)
S_symm.readFromFile();
densityMatrix.readFromFile();
output_sparsity_symm(n, densityMatrix, "new density matrix");
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Tr( D * S ) = %22.11f", (double)symmMatrix::trace_ab(densityMatrix, S_symm));
densityMatrix.writeToFile();
S_symm.writeToFile();
}
static int write_matrix_to_file(symmMatrix& M, const std::vector<int>& inversePermutationHML, const BasisInfoStruct& basisInfo, const char *fileName)
{
M.readFromFile();
matrix_description_struct matrixList[2];
int nvalues = M.nvalues();
std::vector<int> rowind;
rowind.reserve(nvalues);
std::vector<int> colind;
colind.reserve(nvalues);
std::vector<ergo_real> values;
values.reserve(nvalues);
M.get_all_values(rowind, colind, values, inversePermutationHML, inversePermutationHML);
M.writeToFile();
matrixList[0].nvalues = nvalues;
matrixList[0].rowind = &rowind[0];
matrixList[0].colind = &colind[0];
matrixList[0].values = &values[0];
if (ddf_writeShellListAndDensityMatricesToFile_sparse(basisInfo, 1, matrixList, fileName) != 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_SCF, "Error in ddf_writeShellListAndDensityMatricesToFile_sparse.");
return -1;
}
return 0;
}
void SCF_restricted::write_density_to_file()
{
if (write_matrix_to_file(densityMatrix, matOpts.inversePermutationHML, basisInfo, "density.bin") != 0)
{
throw "error in SCF_restricted::write_density_to_file(): write_matrix_to_file failed for densityMatrix.";
}
if (scfopts.compute_core_density == 1)
{
if (write_matrix_to_file(densityMatrix_core, matOpts.inversePermutationHML, basisInfo, "density_core.bin") != 0)
{
throw "error in SCF_restricted::write_density_to_file(): write_matrix_to_file failed for densityMatrix_core.";
}
}
}
void SCF_restricted::save_final_potential()
{
if (save_symmetric_matrix(FockMatrix, basisInfo, "potential.bin",
matOpts.inversePermutationHML) != 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_SCF,
"error in ddf_writeShellListAndDensityMatricesToFile");
throw "error in ddf_writeShellListAndDensityMatricesToFile";
}
}
void SCF_restricted::save_full_matrices_for_matlab()
{
int n = basisInfo.noOfBasisFuncs;
FockMatrix.readFromFile();
write_full_matrix(n, FockMatrix, "matrix_F",
matOpts.inversePermutationHML);
FockMatrix.writeToFile();
S_symm.readFromFile();
write_full_matrix(n, S_symm, "matrix_S",
matOpts.inversePermutationHML);
S_symm.writeToFile();
densityMatrix.readFromFile();
write_full_matrix(n, densityMatrix, "matrix_D",
matOpts.inversePermutationHML);
densityMatrix.writeToFile();
}
void SCF_restricted::output_expected_values_pos_operator()
{
if(eigVecOCC.size() == 1)
get_expected_values_pos_operator(eigVecOCC[0], "HOMO");
if(eigVecUNOCC.size() == 1)
get_expected_values_pos_operator(eigVecUNOCC[0], "LUMO");
if(eigVecOCC.size() > 1)
for (size_t i = 1; i < eigVecOCC.size(); i++) {
std::ostringstream name;
name << "OCCUPIED " << i;
get_expected_values_pos_operator(eigVecOCC[i], name.str().c_str());
}
if(eigVecUNOCC.size() > 1)
for (size_t i = 1; i < eigVecUNOCC.size(); i++) {
std::ostringstream name;
name << "UNOCCUPIED " << i;
get_expected_values_pos_operator(eigVecUNOCC[i], name.str().c_str());
}
}
// expected value of a measurement of the position of the particle
void SCF_restricted::get_expected_values_pos_operator(generalVector& eigVec, const char *vector_name)
{
Util::TimeMeter timeMeter;
int n = basisInfo.noOfBasisFuncs;
if (eigVec.is_empty())
{
do_output(LOG_CAT_WARNING, LOG_AREA_SCF, "Failed to output expected value of a position operator for the %s eigenvector.", vector_name);
return;
}
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Computing expected value of a position operator for the %s eigenvector.", vector_name);
std::vector<ergo_real> vec(n);
eigVec.fullvector(vec);
// get density matrix corresponding to the eigenvector
std::vector<int> rows(n), cols(n);
std::vector<ergo_real> vals(n);
ergo_real tmp;
size_t count = 0;
for (int i = 0; i < n; ++i)
for (int j = i; j < n; ++j)
{
tmp = vec[i] * vec[j];
if(template_blas_fabs(tmp) < 1e-5)
continue;
rows[count] = i;
cols[count] = j;
vals[count] = tmp;
count++;
if(count % n == 0)
{
rows.resize(count+n);
cols.resize(count+n);
vals.resize(count+n);
}
}
rows.resize(count);
cols.resize(count);
vals.resize(count);
symmMatrix densityMatrix;
densityMatrix.resetSizesAndBlocks(matOpts.size_block_info, matOpts.size_block_info);
densityMatrix.assign_from_sparse(rows, cols, vals);
std::vector<ergo_real> mean;
std::vector<ergo_real> std;
get_exp_value_pos_operator(basisInfo,
molecule,
densityMatrix,
matOpts.size_block_info,
matOpts.permutationHML,
mean,
std);
if ((mean.size() != 3) || (std.size() != 3))
{
throw "Error in output_expected_values_pos_operator: wrong size of a vector.";
}
ergo_real conv_const = UNIT_one_Angstrom; // convert a.u. to Angstrom
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Expected value of position operator: \n (%.12lf, %.12lf, %.12lf) a.u. = (%.12lf, %.12lf, %.12lf) A",
mean[0], mean[1], mean[2],
mean[0] / conv_const, mean[1] / conv_const, mean[2] / conv_const);
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Standard deviation of position operator: \n (%.12lf, %.12lf, %.12lf) a.u. = (%.12lf, %.12lf, %.12lf) A",
std[0], std[1], std[2],
std[0] / conv_const, std[1] / conv_const, std[2] / conv_const);
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "SCF_restricted::output_expected_values_pos_operator finished OK.");
timeMeter.print(LOG_AREA_SCF, "SCF_restricted::output_expected_values_pos_operator");
}
void SCF_restricted::output_density_images()
{
Util::TimeMeter timeMeter;
int n = basisInfo.noOfBasisFuncs;
ergo_real *densityMatrixFull_tot = new ergo_real[n * n];
ergo_real *densityMatrixFull_spin = new ergo_real[n * n];
// Get full matrix version of density matrix, and empty spin density matrix.
{
std::vector<ergo_real> densityMatrixFull(n *n);
densityMatrix.readFromFile();
densityMatrix.fullMatrix(densityMatrixFull,
matOpts.inversePermutationHML,
matOpts.inversePermutationHML);
densityMatrix.writeToFile();
for (int i = 0; i < n * n; i++)
{
densityMatrixFull_tot [i] = densityMatrixFull[i];
densityMatrixFull_spin[i] = 0;
}
}
do_density_images(basisInfo,
molecule,
densityMatrixFull_tot,
densityMatrixFull_spin,
scfopts.output_density_images_boxwidth);
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "SCF_restricted::output_density_images finished OK.");
timeMeter.print(LOG_AREA_SCF, "SCF_restricted::output_density_images");
}
void SCF_restricted::output_density_images_orbital(generalVector& eigVec, const std::string& filename_id)
{
Util::TimeMeter timeMeter;
int n = basisInfo.noOfBasisFuncs;
ergo_real *densityMatrixFull_tot = new ergo_real[n * n];
ergo_real *densityMatrixFull_spin = new ergo_real[n * n];
if (eigVec.is_empty())
{
do_output(LOG_CAT_WARNING, LOG_AREA_SCF, "Failed to output density image for the eigenvector.");
return;
}
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Creating density image for the eigenvector.");
std::vector<ergo_real> vec_perm(n);
eigVec.fullvector(vec_perm);
// now we have the permuted vector
std::vector<ergo_real> vec(n);
for (int ind = 0; ind < n; ind++)
{
vec[ind] = vec_perm[matOpts.inversePermutationHML[ind]];
}
// create density matrix corresponding to the given orbital
std::vector<ergo_real> densityMatrixFull(n *n);
for (int j = 0; j < n; ++j)
{
for (int i = 0; i < n; ++i)
{
densityMatrixFull[i + j * n] = vec[i] * vec[j];
}
}
// Get full matrix version of density matrix, and empty spin density matrix.
{
for (int i = 0; i < n * n; i++)
{
densityMatrixFull_tot [i] = densityMatrixFull[i];
densityMatrixFull_spin[i] = 0;
}
}
do_density_images(basisInfo,
molecule,
densityMatrixFull_tot,
densityMatrixFull_spin,
scfopts.output_density_images_boxwidth,
filename_id); // add filename id
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "SCF_restricted::output_density_images_orbital finished OK.");
timeMeter.print(LOG_AREA_SCF, "SCF_restricted::output_density_images_orbital");
}
void SCF_restricted::write_diag_dens_to_file()
{
int n = basisInfo.noOfBasisFuncs;
densityMatrix.readFromFile();
write_diag_elements_to_file(n, densityMatrix, "diagdens.txt",
matOpts.permutationHML);
densityMatrix.writeToFile();
}
void SCF_restricted::report_final_results()
{
}
void SCF_restricted::do_spin_flip(int atomCount)
{
throw "error: SCF_restricted::do_spin_flip does not make sense, should not have been called.";
}
void SCF_restricted::save_density_as_prevdens()
{
densityMatrix.readFromFile();
Dprev.readFromFile();
Dprev = densityMatrix;
densityMatrix.writeToFile();
Dprev.writeToFile();
}
void SCF_restricted::report_density_difference()
{
if (scfopts.do_report_density_diff == 0)
{
do_output(LOG_CAT_INFO, LOG_AREA_SCF,
"SCF_restricted::report_density_difference() skipping: (scfopts.do_report_density_diff == 0).");
return;
}
Util::TimeMeter tm;
densityMatrix.readFromFile();
Dprev.readFromFile();
symmMatrix diff(densityMatrix);
diff += (ergo_real) - 1.0 * Dprev;
ergo_real diff_eucl = GetEuclideanNormOfMatrix(diff);
densityMatrix.writeToFile();
Dprev.writeToFile();
do_output(LOG_CAT_INFO, LOG_AREA_SCF,
"SCF_restricted::report_density_difference, diff_eucl = %22.11f", (double)diff_eucl);
tm.print(LOG_AREA_SCF, "SCF_restricted::report_density_difference");
}
void SCF_restricted::compute_dipole_moment()
{
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "SCF_restricted::compute_dipole_moment");
densityMatrix.readFromFile();
get_dipole_moment(densityMatrix, basisInfo, matOpts.size_block_info, matOpts.permutationHML, molecule, LOG_AREA_SCF, "SCF");
densityMatrix.writeToFile();
}
void SCF_restricted::do_mulliken_pop_stuff()
{
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "SCF_restricted::do_mulliken_pop_stuff");
densityMatrix.readFromFile();
S_symm.readFromFile();
do_mulliken_atomic_charges(densityMatrix,
S_symm,
basisInfo,
matOpts.size_block_info,
matOpts.permutationHML,
matOpts.inversePermutationHML,
molecule);
densityMatrix.writeToFile();
S_symm.writeToFile();
}
void SCF_restricted::create_mtx_files_F(int const scfIter)
{
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Creating mtx file for Fock matrix");
std::stringstream ss_fileName;
ss_fileName << "F_matrix_" << scfIter;
std::stringstream ss_id;
ss_id << scfopts.calculation_identifier << " - effective Hamiltonian matrix, SCF cycle " << scfIter;
FockMatrix.readFromFile();
write_matrix_in_matrix_market_format(FockMatrix, matOpts.inversePermutationHML, ss_fileName.str(),
ss_id.str(), scfopts.method_and_basis_set);
FockMatrix.writeToFile();
}
void SCF_restricted::create_mtx_files_D(int const scfIter)
{
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Creating mtx file for density matrix");
std::stringstream ss_fileName;
ss_fileName << "D_matrix_" << scfIter;
std::stringstream ss_id;
ss_id << scfopts.calculation_identifier << " - density matrix, SCF cycle " << scfIter;
densityMatrix.readFromFile();
write_matrix_in_matrix_market_format(densityMatrix, matOpts.inversePermutationHML, ss_fileName.str(),
ss_id.str(), scfopts.method_and_basis_set);
densityMatrix.writeToFile();
}
void SCF_restricted::create_eigenvalues_files() const
{
if(! eigValOCC.empty() )
{
std::ofstream ff("occupied_spectrum.txt");
for (size_t ind = 0; ind < eigValOCC.size(); ind++)
{
ff << (double)eigValOCC[ind] << std::endl;
}
ff.close();
}
if(! eigValUNOCC.empty() )
{
std::ofstream ff("unoccupied_spectrum.txt");
for (size_t ind = 0; ind < eigValUNOCC.size(); ind++)
{
ff << (double)eigValUNOCC[ind] << std::endl;
}
ff.close();
}
}
void SCF_restricted::create_eigenvectors_files() const
{
create_eigenvalues_files();
if(! eigVecOCC.empty() )
{
create_eigvec_file(eigVecOCC[0],
"HOMO",
"homo_coefficient_vec");
for (size_t i = 1; i < eigVecOCC.size(); i++)
{
std::stringstream ss_name, ss_filename;
ss_name << "HOMO-" << i;
ss_filename << "occ_" << i << "_coefficient_vec";
create_eigvec_file(eigVecOCC[i],
ss_name.str().c_str(),
ss_filename.str().c_str());
}
}
if(! eigVecUNOCC.empty())
{
create_eigvec_file(eigVecUNOCC[0],
"LUMO",
"lumo_coefficient_vec");
for (size_t i = 1; i < eigVecUNOCC.size(); i++)
{
std::stringstream ss_name, ss_filename;
ss_name << "LUMO-" << i;
ss_filename << "unocc_" << i << "_coefficient_vec";
create_eigvec_file(eigVecUNOCC[i],
ss_name.str().c_str(),
ss_filename.str().c_str());
}
}
}
void SCF_restricted::create_eigvec_file(const generalVector& eigVec,
const char *vector_name,
const char *filename_id) const
{
if (eigVec.is_empty())
{
do_output(LOG_CAT_WARNING, LOG_AREA_SCF, "Failed to output %s to file. No %s eigenvector stored.", vector_name, vector_name);
return;
}
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Storing %s eigenvector to file %s.", vector_name, filename_id);
int n = basisInfo.noOfBasisFuncs;
std::vector<ergo_real> vec_perm(n);
eigVec.fullvector(vec_perm);
// now we have the permuted vector
std::vector<ergo_real> vec(n);
for (int ind = 0; ind < n; ind++)
{
vec[matOpts.inversePermutationHML[ind]] = vec_perm[ind];
}
char ffname[888];
sprintf(ffname, "%s.txt", filename_id);
std::ofstream ff(ffname);
for (int ind = 0; ind < n; ind++)
{
ff << (double)vec[ind] << std::endl;
}
ff.close();
}
static void
output_orbital_coeffs_in_gabedit_order(const BasisInfoStruct& basisInfo,
std::vector<int> const& shellIdxList,
std::ofstream& ff,
std::vector<ergo_real> const& orbital_vec)
{
int count = 0;
for (int i = 0; i < basisInfo.noOfShells; i++)
{
int k = shellIdxList[i];
int startIdx = basisInfo.shellList[k].startIndexInMatrix;
switch (basisInfo.shellList[k].shellType)
{
case 0: // s-type shell
ff << count + 1 << " " << (double)orbital_vec[startIdx] << std::endl;
count++;
break;
case 1: // p-type shell
ff << count + 1 << " " << (double)orbital_vec[startIdx + 2] << std::endl;
count++;
ff << count + 1 << " " << (double)orbital_vec[startIdx + 0] << std::endl;
count++;
ff << count + 1 << " " << (double)orbital_vec[startIdx + 1] << std::endl;
count++;
break;
case 2: // d-type shell
ff << count + 1 << " " << (double)orbital_vec[startIdx + 2] << std::endl;
count++;
ff << count + 1 << " " << (double)orbital_vec[startIdx + 3] << std::endl;
count++;
ff << count + 1 << " " << (double)orbital_vec[startIdx + 1] << std::endl;
count++;
ff << count + 1 << " " << (double)orbital_vec[startIdx + 4] << std::endl;
count++;
ff << count + 1 << " " << (double)orbital_vec[startIdx + 0] << std::endl;
count++;
break;
case 3: // f-type shell
ff << count + 1 << " " << (double)orbital_vec[startIdx + 3] << std::endl;
count++;
ff << count + 1 << " " << (double)orbital_vec[startIdx + 4] << std::endl;
count++;
ff << count + 1 << " " << (double)orbital_vec[startIdx + 2] << std::endl;
count++;
ff << count + 1 << " " << (double)orbital_vec[startIdx + 5] << std::endl;
count++;
ff << count + 1 << " " << (double)orbital_vec[startIdx + 1] << std::endl;
count++;
ff << count + 1 << " " << (double)orbital_vec[startIdx + 6] << std::endl;
count++;
ff << count + 1 << " " << (double)orbital_vec[startIdx + 0] << std::endl;
count++;
break;
case 4: // g-type shell
ff << count + 1 << " " << (double)orbital_vec[startIdx + 4] << std::endl;
count++;
ff << count + 1 << " " << (double)orbital_vec[startIdx + 5] << std::endl;
count++;
ff << count + 1 << " " << (double)orbital_vec[startIdx + 3] << std::endl;
count++;
ff << count + 1 << " " << (double)orbital_vec[startIdx + 6] << std::endl;
count++;
ff << count + 1 << " " << (double)orbital_vec[startIdx + 2] << std::endl;
count++;
ff << count + 1 << " " << (double)orbital_vec[startIdx + 7] << std::endl;
count++;
ff << count + 1 << " " << (double)orbital_vec[startIdx + 1] << std::endl;
count++;
ff << count + 1 << " " << (double)orbital_vec[startIdx + 8] << std::endl;
count++;
ff << count + 1 << " " << (double)orbital_vec[startIdx + 0] << std::endl;
count++;
break;
default:
throw "error in output_orbital_coeffs_in_gabedit_order: shell types beyond g not implemented!";
}
}
if (count != basisInfo.noOfBasisFuncs)
{
throw "error in output_orbital_coeffs_in_gabedit_order: (count != basisInfo.noOfBasisFuncs)";
}
}
void SCF_restricted::create_gabedit_file() const
{
if (eigVecOCC.empty() || eigVecUNOCC.empty())
{
do_output(LOG_CAT_WARNING, LOG_AREA_SCF, "Failed to output eigenvectors to gabedit file; no eigenvectors info available.");
return;
}
if (basisInfo.use_6_d_funcs == 1)
{
do_output(LOG_CAT_WARNING, LOG_AREA_SCF, "Failed to output eigenvectors to gabedit file; not implemented for use_6_d_funcs case.");
return;
}
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Creating Gabedit file with eigenvector info.");
int n = basisInfo.noOfBasisFuncs;
// Create Gabedit file.
const char fileName [] = "gabeditfile.gab";
std::ofstream ff(fileName);
/* FIXME: check if we should use "Cart" or "Sphe" here. That is,
* should we use use_6_d_funcs? */
int use_6_d_funcs = 0;
ff << "[Gabedit Format] Sphe" << std::endl;
ff << "[Atoms] Angs" << std::endl;
for (int i = 0; i < molecule.getNoOfAtoms(); i++)
{
char atomLabelString[4];
get_atom_label_from_charge_int(molecule.getAtom(i).charge, atomLabelString, 4);
ff << atomLabelString << " " << i + 1 << " " << (double)molecule.getAtom(i).charge
<< " " << (double)(molecule.getAtom(i).coords[0] / UNIT_one_Angstrom)
<< " " << (double)(molecule.getAtom(i).coords[1] / UNIT_one_Angstrom)
<< " " << (double)(molecule.getAtom(i).coords[2] / UNIT_one_Angstrom)
<< std::endl;
}
std::vector<int> shellIdxList(basisInfo.noOfShells);
int shellIdxCounter = 0;
SquareFuncIntegrator sfi;
ff << "[Basis]" << std::endl;
for (int i = 0; i < molecule.getNoOfAtoms(); i++)
{
ff << i + 1 << " 0" << std::endl;
// Now output info about shells for this atom.
for (int k = 0; k < basisInfo.noOfShells; k++)
{
// Check if this shell belongs to the current atom.
ergo_real absdx = template_blas_fabs(basisInfo.shellList[k].centerCoords[0] - molecule.getAtom(i).coords[0]);
ergo_real absdy = template_blas_fabs(basisInfo.shellList[k].centerCoords[1] - molecule.getAtom(i).coords[1]);
ergo_real absdz = template_blas_fabs(basisInfo.shellList[k].centerCoords[2] - molecule.getAtom(i).coords[2]);
ergo_real distlimit = 0.01;
if ((absdx > distlimit) || (absdy > distlimit) || (absdz > distlimit))
{
continue;
}
// OK, now we know this shell is at least very near the current atom.
shellIdxList[shellIdxCounter] = k;
shellIdxCounter++;
char shellChar = 'x';
int shellType = basisInfo.shellList[k].shellType;
switch (shellType)
{
case 0:
shellChar = 's';
break;
case 1:
shellChar = 'p';
break;
case 2:
shellChar = 'd';
break;
case 3:
shellChar = 'f';
break;
case 4:
shellChar = 'g';
break;
default:
throw "SCF_restricted::create_gabedit_file error: shell types beyond g not implemented!";
}
ff << shellChar << " " << basisInfo.shellList[k].noOfContr << " 1.00" << std::endl;
for (int contridx = 0; contridx < basisInfo.shellList[k].noOfContr; contridx++)
{
ergo_real exponent = basisInfo.shellList[k].exponentList[contridx];
ergo_real shellFactor = sfi.getShellFactor(integralInfo, exponent, shellType, use_6_d_funcs);
ergo_real coeff = basisInfo.shellList[k].coeffList[contridx] / shellFactor;
ff << (double)exponent << " " << (double)coeff << std::endl;
}
}
// Blank line before shells for next atom.
ff << std::endl;
}
if (shellIdxCounter != basisInfo.noOfShells)
{
throw "Error: (shellIdxCounter != basisInfo.noOfShells)";
}
// MO section.
ff << "[MO]" << std::endl;
// // HOMO
// ff << "Spin=Alpha" << std::endl;
// ff << "Occup= 2.000000" << std::endl;
// output_orbital_coeffs_in_gabedit_order(basisInfo, shellIdxList, ff, homo_vec);
// // LUMO
// ff << "Spin=Alpha" << std::endl;
// ff << "Occup= 0.000000" << std::endl;
// output_orbital_coeffs_in_gabedit_order(basisInfo, shellIdxList, ff, lumo_vec);
// Occupied orbitals
for (int orb = (int)eigVecOCC.size()-1; orb >= 0; orb--) // note that orb can be negative
{
std::vector<ergo_real> orb_vec_perm(n);
eigVecOCC[orb].fullvector(orb_vec_perm);
// now we have the permuted vector
std::vector<ergo_real> orb_vec(n);
for (int ind = 0; ind < n; ind++)
{
orb_vec[matOpts.inversePermutationHML[ind]] = orb_vec_perm[ind];
}
ff << "Spin=Alpha" << std::endl;
if((int)eigValOCC.size() > orb) // in case we do not have eigenvalues
ff << "Energy= " << (double)eigValOCC[orb] << std::endl;
ff << "Occup= 2.000000" << std::endl;
output_orbital_coeffs_in_gabedit_order(basisInfo, shellIdxList, ff, orb_vec);
}
// Unoccupied orbitals
for (size_t orb = 0; orb < eigVecUNOCC.size(); orb++)
{
std::vector<ergo_real> orb_vec_perm(n);
eigVecUNOCC[orb].fullvector(orb_vec_perm);
// now we have the permuted vector
std::vector<ergo_real> orb_vec(n);
for (int ind = 0; ind < n; ind++)
{
orb_vec[matOpts.inversePermutationHML[ind]] = orb_vec_perm[ind];
}
ff << "Spin=Alpha" << std::endl;
if(eigValUNOCC.size() > orb) // in case we do not have eigenvalues
ff << "Energy= " << (double)eigValUNOCC[orb] << std::endl;
ff << "Occup= 0.000000" << std::endl;
output_orbital_coeffs_in_gabedit_order(basisInfo, shellIdxList, ff, orb_vec);
}
// Blank line before end of file.
ff << std::endl;
// Close file.
ff.close();
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Gabedit file '%s' with eigenvectors info created OK.", fileName);
}
void SCF_restricted::update_subspace_diff()
{
densityMatrix.readFromFile();
Dprev.readFromFile();
ergo_real acc = template_blas_sqrt(get_machine_epsilon());
symmMatrix diff(densityMatrix);
diff += (ergo_real) - 1.0 * Dprev;
transform_with_S(diff);
transform_with_invChol(diff);
// Compensate for factor 2 (restricted case)
diff *= (ergo_real)0.5;
ergo_real diff_eucl = diff.eucl(acc);
densityMatrix.writeToFile();
Dprev.writeToFile();
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "SCF_restricted::update_subspace_diff, diff_eucl = %22.11f", (double)diff_eucl);
curr_subspace_diff = diff_eucl;
}
struct RandomNumber
{
ergo_real accumulate(ergo_real& a, int const dummy1, int const dummy2)
{
a = rand() / (ergo_real)RAND_MAX;
return 0;
}
};
/** Transform matrix A to S*A*S */
void SCF_restricted::transform_with_S(symmMatrix& A)
{
S_symm.readFromFile();
normalMatrix S_norm(S_symm);
normalMatrix A_norm(A);
normalMatrix SA(S_symm);
SA = (ergo_real)1.0 * S_norm * A_norm;
normalMatrix SAS(S_symm);
SAS = (ergo_real)1.0 * SA * S_norm;
A = SAS;
S_symm.writeToFile();
}
/** Transform matrix A to invCholT*A*invChol */
void SCF_restricted::transform_with_invChol(symmMatrix& A)
{
invCholFactor.readFromFile();
A = transpose(invCholFactor) * A * invCholFactor;
invCholFactor.writeToFile();
}
void SCF_restricted::get_non_ort_err_mat_normalized_in_ort_basis(symmMatrix& randomMatrix, int transform_with_S_also)
{
symmMatrix randomMatrix1;
randomMatrix1.resetSizesAndBlocks(matOpts.size_block_info,
matOpts.size_block_info);
symmMatrix randomMatrix2;
randomMatrix2.resetSizesAndBlocks(matOpts.size_block_info,
matOpts.size_block_info);
randomMatrix1.random();
randomMatrix2.random();
randomMatrix = 0;
randomMatrix += (ergo_real)1.0 * randomMatrix1;
randomMatrix += (ergo_real) - 1.0 * randomMatrix2;
symmMatrix randomMatrix_ort(randomMatrix);
if (transform_with_S_also)
{
transform_with_S(randomMatrix_ort);
}
transform_with_invChol(randomMatrix_ort);
ergo_real acc = template_blas_sqrt(get_machine_epsilon());
ergo_real randomMatrix_Norm = randomMatrix.eucl(acc);
ergo_real randomMatrix_ort_Norm = randomMatrix_ort.eucl(acc);
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "norms of randomMatrix and randomMatrix_ort : %22.11f %22.11f",
(double)randomMatrix_Norm, (double)randomMatrix_ort_Norm);
// Normalize randomMatrix so that randomMatrix_ort would have norm 1.
randomMatrix *= (ergo_real)(1.0 / randomMatrix_ort_Norm);
ergo_real randomMatrixNormAfterNormalization = randomMatrix.eucl(acc);
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "randomMatrixNormAfterNormalization = %22.11f", (double)randomMatrixNormAfterNormalization);
}
void SCF_restricted::disturb_dens_matrix(ergo_real subspaceError)
{
ergo_real gap = 2;
ergo_real desiredErrorNorm = gap * subspaceError / (1 + subspaceError);
symmMatrix randomMatrix;
randomMatrix.resetSizesAndBlocks(matOpts.size_block_info,
matOpts.size_block_info);
get_non_ort_err_mat_normalized_in_ort_basis(randomMatrix, 1);
densityMatrix.readFromFile();
densityMatrix += desiredErrorNorm * randomMatrix;
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Disturbed density matrix with desiredErrorNorm = %22.11f (gap = %8.3f)",
(double)desiredErrorNorm, (double)gap);
densityMatrix.writeToFile();
}
void SCF_restricted::disturb_dens_matrix_exact_try(const symmMatrix& randomMatrix,
const symmMatrix& orgDensMatrix,
ergo_real disturbanceFactor,
ergo_real& resultSinTheta,
symmMatrix& resultDensMatrix)
{
symmMatrix D(orgDensMatrix);
D += (ergo_real)1.0 * disturbanceFactor * randomMatrix;
symmMatrix SDS_symm(D);
transform_with_S(SDS_symm);
SDS_symm *= (ergo_real) - 1.0;
symmMatrix F_ort_prev_dummy;
F_ort_prev_dummy.resetSizesAndBlocks(matOpts.size_block_info,
matOpts.size_block_info);
F_ort_prev_dummy.writeToFile();
resultDensMatrix.writeToFile();
SDS_symm.writeToFile();
int use_diag = DensFromFock.get_use_diagonalization();
int use_diag_on_error = DensFromFock.get_use_diag_on_error();
DensFromFock.unset_use_diagonalization();
DensFromFock.unset_use_diag_on_error();
DensFromFock.clean_eigs_intervals();
if (DensFromFock.get_dens_from_fock(SDS_symm,
resultDensMatrix,
F_ort_prev_dummy) != 0)
{
throw "SCF_restricted::disturb_dens_matrix_exact_try: Error in get_dens_from_fock";
}
if (use_diag == 1)
{
DensFromFock.set_use_diagonalization();
}
if (use_diag_on_error == 1)
{
DensFromFock.set_use_diag_on_error();
}
// OK, now we have computed D_Pure which is the purified version of SDS_symm.
// But D_Pure is not in orthogonal basis.
resultDensMatrix.readFromFile();
symmMatrix diff(resultDensMatrix);
diff += (ergo_real) - 1.0 * orgDensMatrix;
transform_with_S(diff);
transform_with_invChol(diff);
// Compensate for factor 2 (restricted case)
diff *= (ergo_real)0.5;
ergo_real acc = template_blas_sqrt(get_machine_epsilon());
resultSinTheta = diff.eucl(acc);
}
void SCF_restricted::disturb_dens_matrix_exact(ergo_real subspaceError)
{
//ergo_real gap = 2;
//ergo_real desiredErrorNorm = gap * subspaceError / (1 + subspaceError);
symmMatrix randomMatrix;
randomMatrix.resetSizesAndBlocks(matOpts.size_block_info,
matOpts.size_block_info);
get_non_ort_err_mat_normalized_in_ort_basis(randomMatrix, 1);
symmMatrix newDensMatrix;
newDensMatrix.resetSizesAndBlocks(matOpts.size_block_info,
matOpts.size_block_info);
densityMatrix.readFromFile();
ergo_real currSinTheta;
ergo_real disturbanceFactor_min = 0;
ergo_real disturbanceFactor_max = 5;
int iterCount = 0;
do
{
iterCount++;
if (iterCount > 44)
{
throw "error in SCF_restricted::disturb_dens_matrix_exact, iterCount esceeded limit.";
}
ergo_real disturbanceFactor = 0.5 * (disturbanceFactor_min + disturbanceFactor_max);
disturb_dens_matrix_exact_try(randomMatrix,
densityMatrix,
disturbanceFactor,
currSinTheta,
newDensMatrix);
if (currSinTheta < subspaceError)
{
disturbanceFactor_min = disturbanceFactor;
}
else
{
disturbanceFactor_max = disturbanceFactor;
}
} while (template_blas_fabs(currSinTheta - subspaceError) > 0.001 * subspaceError);
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "SCF_restricted::disturb_dens_matrix_exact done, iterCount = %2i", iterCount);
densityMatrix = newDensMatrix;
densityMatrix.writeToFile();
}
void SCF_restricted::disturb_fock_matrix(ergo_real subspaceError)
{
symmMatrix F_ort_prev_dummy;
F_ort_prev_dummy.resetSizesAndBlocks(matOpts.size_block_info,
matOpts.size_block_info);
F_ort_prev_dummy.writeToFile();
symmMatrix densityMatrix_dummy;
densityMatrix_dummy.resetSizesAndBlocks(matOpts.size_block_info,
matOpts.size_block_info);
densityMatrix_dummy.writeToFile();
int use_diag = DensFromFock.get_use_diagonalization();
int use_diag_on_error = DensFromFock.get_use_diag_on_error();
DensFromFock.unset_use_diagonalization();
DensFromFock.unset_use_diag_on_error();
DensFromFock.clean_eigs_intervals();
if (DensFromFock.get_dens_from_fock(FockMatrix,
densityMatrix_dummy,
F_ort_prev_dummy) != 0)
{
throw "SCF_restricted::disturb_fock_matrix: Error in get_dens_from_fock";
}
if (use_diag == 1)
{
DensFromFock.set_use_diagonalization();
}
if (use_diag_on_error == 1)
{
DensFromFock.set_use_diag_on_error();
}
intervalType homoInterval_tmp2;
intervalType lumoInterval_tmp2;
DensFromFock.get_eigs_F_ort_prev(homoInterval_tmp2, lumoInterval_tmp2);
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "SCF_restricted::disturb_fock_matrix, interval sizes: %22.11f %22.11f",
(double)(homoInterval_tmp2.upp() - homoInterval_tmp2.low()), (double)(lumoInterval_tmp2.upp() - lumoInterval_tmp2.low()));
ergo_real gap = lumoInterval_tmp2.low() - homoInterval_tmp2.upp();
ergo_real desiredErrorNorm = gap * subspaceError / (1 + subspaceError);
symmMatrix randomMatrix;
randomMatrix.resetSizesAndBlocks(matOpts.size_block_info,
matOpts.size_block_info);
get_non_ort_err_mat_normalized_in_ort_basis(randomMatrix, 0);
FockMatrix.readFromFile();
FockMatrix += desiredErrorNorm * randomMatrix;
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Disturbed Fock matrix with desiredErrorNorm = %22.11f (gap = %8.3f)",
(double)desiredErrorNorm, (double)gap);
FockMatrix.writeToFile();
}
static ergo_real get_nucl_energy_for_given_mol_and_dens(const IntegralInfo& integralInfo,
const Molecule& molecule,
const BasisInfoStruct& basisInfo,
const symmMatrix& D,
ergo_real threshold_integrals_1el,
mat::SizesAndBlocks const& matrix_size_block_info,
std::vector<int> const& permutationHML)
{
ergo_real nuclearRepulsionEnergy = molecule.getNuclearRepulsionEnergyQuadratic();
ergo_real elecNuclEnergy = get_electron_nuclear_attraction_energy(integralInfo,
molecule,
basisInfo,
D,
threshold_integrals_1el,
matrix_size_block_info,
permutationHML);
return nuclearRepulsionEnergy + elecNuclEnergy;
}
/* Compute gradient of energy with respect to nuclear positions, for
* fixed electron density. */
void
SCF_restricted::compute_gradient_fixeddens()
{
// Since we here regard the electron density as fixed, there are
// only two terms in the energy which give nonzero contributions:
// the nuclear-electron interaction term, and the nuclear-nuclear
// interaction term.
densityMatrix.readFromFile();
int nAtoms = molecule.getNoOfAtoms();
std::vector<ergo_real> gradient(nAtoms * 3);
get_gradient_for_given_mol_and_dens(integralInfo,
molecule,
basisInfo,
densityMatrix,
threshold_integrals_1el,
matOpts.size_block_info,
matOpts.permutationHML,
&gradient[0]);
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Gradient of energy with respect to nuclear positions, "
"for fixed electron density (no Pulay correction, only Hellmann-Feynman forces):");
for (int i = 0; i < nAtoms; i++)
{
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Atom %6d: %22.11f %22.11f %22.11f",
i,
(double)gradient[i * 3 + 0],
(double)gradient[i * 3 + 1],
(double)gradient[i * 3 + 2]);
}
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "(End of gradient)");
if (scfopts.verify_gradient_fixeddens == 1)
{
std::vector<ergo_real> gradient_for_verification(nAtoms * 3);
for (int i = 0; i < nAtoms; i++)
{
for (int coordIdx = 0; coordIdx < 3; coordIdx++)
{
const ergo_real h = 1e-3;
Molecule moleculeTmp = molecule;
Atom atomTmp = molecule.getAtom(i);
atomTmp.coords[coordIdx] += h;
moleculeTmp.replaceAtom(i, atomTmp);
ergo_real E1 = get_nucl_energy_for_given_mol_and_dens(integralInfo,
moleculeTmp,
basisInfo,
densityMatrix,
threshold_integrals_1el,
matOpts.size_block_info,
matOpts.permutationHML);
moleculeTmp = molecule;
atomTmp = molecule.getAtom(i);
atomTmp.coords[coordIdx] -= h;
moleculeTmp.replaceAtom(i, atomTmp);
ergo_real E2 = get_nucl_energy_for_given_mol_and_dens(integralInfo,
moleculeTmp,
basisInfo,
densityMatrix,
threshold_integrals_1el,
matOpts.size_block_info,
matOpts.permutationHML);
ergo_real gradientComponent = (E1 - E2) / (2 * h);
gradient_for_verification[i * 3 + coordIdx] = gradientComponent;
} // END FOR coordIdx
} // END FOR i
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Gradient of energy with respect to nuclear positions, for fixed electron density (for verification, computed using finite differences):");
for (int i = 0; i < nAtoms; i++)
{
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "Atom %6d: %22.11f %22.11f %22.11f",
i,
(double)gradient_for_verification[i * 3 + 0],
(double)gradient_for_verification[i * 3 + 1],
(double)gradient_for_verification[i * 3 + 2]);
}
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "(End of gradient)");
ergo_real maxAbsDiff = -1;
int atomIdx_saved = -1;
int coordIdx_saved = -1;
for (int atomIdx = 0; atomIdx < nAtoms; atomIdx++)
{
for (int coordIdx = 0; coordIdx < 3; coordIdx++)
{
ergo_real absdiff = template_blas_fabs(gradient[atomIdx * 3 + coordIdx] - gradient_for_verification[atomIdx * 3 + coordIdx]);
if (absdiff > maxAbsDiff)
{
maxAbsDiff = absdiff;
atomIdx_saved = atomIdx;
coordIdx_saved = coordIdx;
}
}
}
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "maxAbsDiff %22.11f = %9.4g, for atomIdx %d and coordIdx %d", maxAbsDiff, maxAbsDiff, atomIdx_saved, coordIdx_saved);
}
densityMatrix.writeToFile();
}
|