1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file diis_restricted.cc
@brief DIISManagerRestricted class implementing direct inversion
in the iterative subspace (DIIS) for restricted SCF calculations.
@author: Elias Rudberg <em>responsible</em>.
*/
#include <string.h>
#include "diis_restricted.h"
#include "output.h"
#include "solve_lin_eq_syst.h"
#include "utilities.h"
DIISManagerRestricted::DIISManagerRestricted()
: DIISManager()
{
}
DIISManagerRestricted::~DIISManagerRestricted()
{
ClearList();
}
int DIISManagerRestricted::AddIterationToList(symmMatrix & F, normalMatrix & E)
{
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "entering DIISManagerRestricted::AddIterationToList, IterCount = %2i", IterCount);
Util::TimeMeter timeMeter;
if(IterCount > MaxNoOfIters)
{
do_output(LOG_CAT_ERROR, LOG_AREA_SCF, "error:(IterCount > MaxNoOfIters)");
return -1;
}
// check if the list is full
if(IterCount == MaxNoOfIters)
{
// remove oldest iteration
delete F_list[0][0];
F_list[0][0] = NULL;
delete E_list[0][0];
E_list[0][0] = NULL;
int i;
for(i = 0; i < IterCount-1; i++)
{
F_list[0][i] = F_list[0][i+1];
F_list[0][i+1] = NULL;
E_list[0][i] = E_list[0][i+1];
E_list[0][i+1] = NULL;
}
RemoveOldestIteration(); /* note that this changes the value of IterCount */
}
F_list[0][IterCount] = new symmMatrix(F);
F_list[0][IterCount]->writeToFile();
E_list[0][IterCount] = new normalMatrix(E);
E_list[0][IterCount]->writeToFile();
// Create new B matrix
int dimB = IterCount + 1;
int dimBnew = IterCount + 2;
ergo_real* Bnew = new ergo_real[dimBnew*dimBnew];
memset(Bnew, 0, dimBnew*dimBnew*sizeof(ergo_real));
int i, j;
for(i = 0; i < dimB; i++)
for(j = 0; j < dimB; j++)
Bnew[i*dimBnew+j] = B[i*dimB+j];
// Set two matrix elements to -1
Bnew[0*dimBnew+dimBnew-1] = -1;
Bnew[(dimBnew-1)*dimBnew+0] = -1;
// Now it remains to complete B with scalar products of error matrices
for(i = 0; i < IterCount; i++)
{
// compute dot product of error matrix i and E
E_list[0][i]->readFromFile();
ergo_real scalarProd = DoScalarProductOfErrorMatrices(E, *E_list[0][i]);
E_list[0][i]->writeToFile();
Bnew[(dimBnew-1)*dimBnew+(1+i)] = scalarProd;
Bnew[(1+i)*dimBnew+(dimBnew-1)] = scalarProd;
}
// Do scalar product of the new E with itself
Bnew[(dimBnew-1)*dimBnew+(dimBnew-1)] = DoScalarProductOfErrorMatrices(E, E);
// Copy Bnew to B
memcpy(B, Bnew, dimBnew*dimBnew*sizeof(ergo_real));
delete [] Bnew;
IterCount++;
do_output(LOG_CAT_INFO, LOG_AREA_SCF, "DIISManagerRestricted::AddIterationToList ending OK.");
timeMeter.print(LOG_AREA_SCF, "DIISManagerRestricted::AddIterationToList");
return 0;
}
int DIISManagerRestricted::ClearList()
{
int i;
for(i = 0; i < IterCount; i++)
{
delete F_list[0][i];
F_list[0][i] = NULL;
delete E_list[0][i];
E_list[0][i] = NULL;
}
IterCount = 0;
return 0;
}
int DIISManagerRestricted::GetCombinedFockMatrix(symmMatrix & result)
{
if(IterCount <= 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_SCF, "error in DIISManagerRestricted::GetCombinedFockMatrix: (IterCount <= 0)");
return -1;
}
int dimB = IterCount + 1;
ergo_real* RHS = new ergo_real[dimB];
ergo_real* cVector = new ergo_real[dimB];
// Construct vector RHS
RHS[0] = -1;
int i;
for(i = 0; i < IterCount; i++)
RHS[i+1] = 0;
// Solve equation system B*x = HL
if(solve_linear_equation_system(dimB, B, RHS, cVector) != 0)
{
do_output(LOG_CAT_ERROR, LOG_AREA_SCF, "error in solve_linear_equation_system");
return -1;
}
// Create linear combination of Fock matrices using coefficients from cVector.
F_list[0][0]->readFromFile();
result = *F_list[0][0];
F_list[0][0]->writeToFile();
result *= cVector[1];
for(i = 1; i < IterCount; i++)
{
F_list[0][i]->readFromFile();
result += cVector[1+i] * (*F_list[0][i]);
F_list[0][i]->writeToFile();
} // END FOR i
delete [] RHS;
delete [] cVector;
return 0;
}
|