File: diis_unrestricted.cc

package info (click to toggle)
ergo 3.8.2-1.1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 17,568 kB
  • sloc: cpp: 94,763; ansic: 17,785; sh: 10,701; makefile: 1,403; yacc: 127; lex: 116; awk: 23
file content (227 lines) | stat: -rw-r--r-- 6,767 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
 * calculations.
 * Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
 * and Anastasia Kruchinina.
 * 
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 * 
 * Primary academic reference:
 * Ergo: An open-source program for linear-scaling electronic structure
 * calculations,
 * Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
 * Kruchinina,
 * SoftwareX 7, 107 (2018),
 * <http://dx.doi.org/10.1016/j.softx.2018.03.005>
 * 
 * For further information about Ergo, see <http://www.ergoscf.org>.
 */

/** @file diis_unrestricted.cc

    @brief DIISManagerUnrestricted class implementing direct inversion
    in the iterative subspace (DIIS) for unrestricted SCF
    calculations.

    @author: Elias Rudberg <em>responsible</em>.
*/

#include <string.h>

#include "diis_unrestricted.h"

#include "output.h"
#include "solve_lin_eq_syst.h"
#include "utilities.h"


DIISManagerUnrestricted::DIISManagerUnrestricted()
  : DIISManager()
{
}

DIISManagerUnrestricted::~DIISManagerUnrestricted()
{
  ClearList();
}

int DIISManagerUnrestricted::AddIterationToList(symmMatrix & F_alpha, 
						symmMatrix & F_beta, 
						normalMatrix & E_alpha,
						normalMatrix & E_beta)
{
  do_output(LOG_CAT_INFO, LOG_AREA_SCF, "entering DIISManagerUnrestricted::AddIterationToList, IterCount = %2i", IterCount);

  Util::TimeMeter timeMeter;
  
  if(IterCount > MaxNoOfIters)
    throw std::runtime_error("Error in DIISManagerUnrestricted::AddIterationToList: (IterCount > MaxNoOfIters).");

  // check if the list is full
  if(IterCount == MaxNoOfIters)
    {
      // remove oldest iteration
      delete F_list[0][0];
      F_list[0][0] = NULL;
      delete E_list[0][0];
      E_list[0][0] = NULL;
      delete F_list[1][0];
      F_list[1][0] = NULL;
      delete E_list[1][0];
      E_list[1][0] = NULL;
      for(int i = 0; i < IterCount-1; i++)
	{
	  F_list[0][i] = F_list[0][i+1];
	  F_list[0][i+1] = NULL;
	  E_list[0][i] = E_list[0][i+1];
	  E_list[0][i+1] = NULL;
	  F_list[1][i] = F_list[1][i+1];
	  F_list[1][i+1] = NULL;
	  E_list[1][i] = E_list[1][i+1];
	  E_list[1][i+1] = NULL;
	}
      RemoveOldestIteration();  /* note that this changes the value of IterCount */
    }

  F_list[0][IterCount] = new symmMatrix(F_alpha);
  F_list[0][IterCount]->writeToFile();
  E_list[0][IterCount] = new normalMatrix(E_alpha);
  E_list[0][IterCount]->writeToFile();

  F_list[1][IterCount] = new symmMatrix(F_beta);
  F_list[1][IterCount]->writeToFile();
  E_list[1][IterCount] = new normalMatrix(E_beta);
  E_list[1][IterCount]->writeToFile();

  // Create new B matrix
  int dimB    = IterCount + 1;
  int dimBnew = IterCount + 2;
  ergo_real* Bnew = new ergo_real[dimBnew*dimBnew];
  memset(Bnew, 0, dimBnew*dimBnew*sizeof(ergo_real));
  for(int i = 0; i < dimB; i++)
    for(int j = 0; j < dimB; j++)
      Bnew[i*dimBnew+j] = B[i*dimB+j];
  // Set two matrix elements to -1
  Bnew[0*dimBnew+dimBnew-1] = -1;
  Bnew[(dimBnew-1)*dimBnew+0] = -1;
  // Now it remains to complete B with scalar products of error matrices
  for(int i = 0; i < IterCount; i++)
    {
      // compute dot product of error matrix i and E
      // alpha
      E_list[0][i]->readFromFile();
      ergo_real scalarProd_alpha = DoScalarProductOfErrorMatrices(E_alpha, *E_list[0][i]);
      E_list[0][i]->writeToFile();
      // beta
      E_list[1][i]->readFromFile();
      ergo_real scalarProd_beta = DoScalarProductOfErrorMatrices(E_beta, *E_list[1][i]);
      E_list[1][i]->writeToFile();

      ergo_real scalarProd = scalarProd_alpha + scalarProd_beta;
      Bnew[(dimBnew-1)*dimBnew+(1+i)] = scalarProd;
      Bnew[(1+i)*dimBnew+(dimBnew-1)] = scalarProd;
    }
  // Do scalar products of the new E's with themselves
  ergo_real scalarProd_alpha = DoScalarProductOfErrorMatrices(E_alpha, E_alpha);
  ergo_real scalarProd_beta  = DoScalarProductOfErrorMatrices(E_beta , E_beta );
  Bnew[(dimBnew-1)*dimBnew+(dimBnew-1)] = scalarProd_alpha + scalarProd_beta;

  // Copy Bnew to B
  memcpy(B, Bnew, dimBnew*dimBnew*sizeof(ergo_real));

  delete []Bnew;

  IterCount++;
  
  do_output(LOG_CAT_INFO, LOG_AREA_SCF, "DIISManagerUnrestricted::AddIterationToList ending OK.");
  timeMeter.print(LOG_AREA_SCF, "DIISManagerUnrestricted::AddIterationToList");  

  return 0;
}

int DIISManagerUnrestricted::ClearList()
{
  int i;
  for(i = 0; i < IterCount; i++)
    {
      delete F_list[0][i];
      F_list[0][i] = NULL;
      delete E_list[0][i];
      E_list[0][i] = NULL;
      delete F_list[1][i];
      F_list[1][i] = NULL;
      delete E_list[1][i];
      E_list[1][i] = NULL;
    }
  IterCount = 0;
  return 0;
}

int DIISManagerUnrestricted::GetCombinedFockMatrices(symmMatrix & result_alpha,
						     symmMatrix & result_beta)
{
  if(IterCount <= 0)
    {
      do_output(LOG_CAT_ERROR, LOG_AREA_SCF, "error in DIISManagerUnrestricted::GetCombinedFockMatrices: (IterCount <= 0)");
      return -1;
    }

  int dimB = IterCount + 1;
  ergo_real* RHS = new ergo_real[dimB];
  ergo_real* cVector = new ergo_real[dimB];
  
  // Construct vector RHS
  RHS[0] = -1;
  for(int i = 0; i < IterCount; i++)
    RHS[i+1] = 0;
  
  // Solve equation system B*x = HL
  if(solve_linear_equation_system(dimB, B, RHS, cVector) != 0)
    {
      do_output(LOG_CAT_ERROR, LOG_AREA_SCF, "error in solve_linear_equation_system");
      return -1;
    }
  
  // Create linear combination of Fock matrices using coefficients from cVector.
  // alpha
  F_list[0][0]->readFromFile();
  result_alpha = *F_list[0][0];
  F_list[0][0]->writeToFile();
  result_alpha *= cVector[1];
  // beta
  F_list[1][0]->readFromFile();
  result_beta = *F_list[1][0];
  F_list[1][0]->writeToFile();
  result_beta *= cVector[1];
  for(int i = 1; i < IterCount; i++)
    {
      // alpha
      F_list[0][i]->readFromFile();
      result_alpha += cVector[1+i] * (*F_list[0][i]);
      F_list[0][i]->writeToFile();
      //beta
      F_list[1][i]->readFromFile();
      result_beta += cVector[1+i] * (*F_list[1][i]);
      F_list[1][i]->writeToFile();      
    } // END FOR i



  delete []RHS;
  delete []cVector;
  
  return 0;
}