1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file slr.cc contains a Simple Linear Response implementation
based on the MO orbital picture. Copyright(c) Pawel Salek 2006.
@author: Pawel Salek <em>responsible</em>
The solver is generic: it can handle both linear sets of equations
and eigenvalue problems. The variable parts are implemented by
subclasses. A subclass must implement following functions:
- getResidual(trial) - returns a residual vector being a
difference between true solution and the solution in the
subspace.
In case of the set of equations, residual is computed in 3 steps:
Solution in the subspace: Xsub = (Asub-freq*Ssub)\\Ysub;
Solution expanded out fo subspace: X=v*Xsub;
Residual vector: residualv= (Av-freq*Sv)*Xsub - Y;
In case of the eigenvalue problem, more steps are needed:
Solution in the subspace: [ Xsub, lambda ] = eig(Asub, Ssub);
Pick first positive eigenvalue l1 = lambda(step+1);
Pick corresponding eigenvector: Xsub = Xsub(:,step+1);
Residual Vector: residualv = (Av-l1*Sv)*Xsub;
- getPreconditonerShift() - get the preconditioner shift. In case
of the set of equations, it is shifted by the constant
frequency. In case of set of eigenvalues, it is shifted by the
best approximation to the required solution, obtained in the
first step from the difference of KS matrix eigenvalues or taken
as the Ritz value when they are available.
- all other stuff, like vector transformation and subspace
extension are handled by the generic solver.
Example usage:
<pre>
MyE2Evaluator e2;
EigenSolver solver(nbast, nocc, fock_matrix, overlap_matrix);
solver.solve(e2);
printf("Lowest eigenvalue: %f\n", solver.getFreq());
</pre>
The important stuff will get printed but also a solution should
probably be returned in some convenient way.
*/
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <vector>
#include "mat_gblas.h"
#include "slr.h"
#include "solve_lin_eq_syst.h"
#include "utilities.h"
#include "output.h"
#include "units.h"
namespace LR {
/** returns dot_product(a, b) */
inline ergo_real
dot(int len, const ergo_real* a, const ergo_real *b)
{
ergo_real r=0;
for(int i=0; i<len; i++) r += a[i]*b[i];
return r;
}
inline ergo_real operator*(const VarVector& a, const VarVector& b){
assert(a.nvar == b.nvar);
assert(a.inMemory); /* or load()? */
assert(b.inMemory); /* or load()? */
return dot(a.nvar*2, a.v, b.v);
}
inline ergo_real
operator*(const VarVector &a, const VarVectorProxyOp<false,false>& b){
assert(a.inMemory); /* or load()? */
assert(b.vec.inMemory); /* or load()? */
return b.scalar*dot(a.nvar*2, a.v, b.vec.v);
}
inline ergo_real
operator*(const VarVector &a, const VarVectorProxyOp<true,false>& b){
assert(a.inMemory);
assert(b.vec.inMemory);
return 2*b.scalar*(dot(a.nvar,a.v, b.vec.v)-
dot(a.nvar,a.v+a.nvar, b.vec.v+a.nvar));
}
inline ergo_real
operator*(const VarVector &a, const VarVectorProxyOp<false,true>& b){
ergo_real r=0;
assert(a.inMemory);
assert(b.vec.inMemory);
for(int i=0; i<a.nvar; i++) {
r += b.scalar * a[i] * b.vec[i+a.nvar];
r += b.scalar * a[i+a.nvar] * b.vec[i];
}
return r;
}
inline VarVectorProxyOp<false, false>
operator*(ergo_real s, const VarVector& v) {
return VarVectorProxyOp<false,false>(v, s);
}
template<bool MultByS, bool SwapXY>
inline VarVectorProxyOp<MultByS, SwapXY>
operator*(ergo_real s, const VarVectorProxyOp<MultByS, SwapXY>& v) {
return VarVectorProxyOp<MultByS,SwapXY>(v.vec, s*v.scalar);
}
inline VarVector&
operator+=(VarVector& a, const VarVectorProxyOp<false,false>& proxy){
assert(a.inMemory);
assert(proxy.vec.inMemory);
for(int i=0; i<2*a.nvar; i++)
a[i] += proxy.scalar*proxy.vec[i];
return a;
}
inline VarVector&
operator+=(VarVector& a, const VarVectorProxyOp<true,false>& proxy){
assert(a.nvar == proxy.vec.nvar);
assert(a.inMemory);
assert(proxy.vec.inMemory);
for(int i=0; i<a.nvar; i++) {
a[i] += 2*proxy.scalar*proxy.vec[i];
a[i+a.nvar] += -2*proxy.scalar*proxy.vec[i+a.nvar];
}
return a;
}
inline VarVector&
operator+=(VarVector& a, const VarVectorProxyOp<false,true>& proxy){
assert(a.nvar == proxy.vec.nvar);
assert(a.inMemory);
assert(proxy.vec.inMemory);
for(int i=0; i<a.nvar; i++) {
a[i] += proxy.scalar*proxy.vec[i+a.nvar];
a[i+a.nvar] += proxy.scalar*proxy.vec[i];
}
return a;
}
inline VarVector&
operator+=(VarVector& a, const VarVectorProxyOp<true,true>& proxy){
assert(a.nvar == proxy.vec.nvar);
assert(a.inMemory);
assert(proxy.vec.inMemory);
for(int i=0; i<a.nvar; i++) {
a[i] += 2*proxy.scalar*proxy.vec[i+a.nvar];
a[i+a.nvar] += -2*proxy.scalar*proxy.vec[i];
}
return a;
}
/** returns a proxy object corresponding to a swapped vector. */
const VarVectorProxyOp<false,true>
swapXY(const VarVector& arg)
{ return VarVectorProxyOp<false, true >(arg, 1.0) ; }
/** returns a proxy object corresponding to a vector multiplied by
S[2], i.e. v -> S[2]*v. */
const VarVectorProxyOp<true,false>
sTimes(const VarVector& arg)
{ return VarVectorProxyOp<true,false>(arg, 1.0) ; }
template<bool SwapXY>
VarVectorProxyOp<true, SwapXY>
sTimes(const VarVectorProxyOp<false, SwapXY>& arg)
{ return VarVectorProxyOp<true, SwapXY >(arg.vec, arg.scalar) ; }
/* VarVector implementation. */
void
VarVector::load(const char* tmpdir)
{
if(inMemory)
return;
if (nvar == 0) {
inMemory = 1;
return;
}
do_output(LOG_CAT_INFO, LOG_AREA_LR, "load::'%s' with nvar=%d", fName, nvar);
if (!fName) throw "loading not saved VarVector";
int fd = open(fName, O_RDONLY, 0);
if (fd == -1)
throw "VarVector disappeared from disk";
if (!v)
v = new ergo_real[2*nvar];
ssize_t readAlready = 0, toRead = nvar*2*sizeof(ergo_real);
do {
ssize_t ret = read(fd, v + readAlready, toRead);
if (ret != -1) {
readAlready += ret;
toRead -= ret;
}
} while (toRead>0);
close(fd);
inMemory = 1;
}
void
VarVector::save(const char* tmpdir)
{
if(onDisk || nvar == 0)
return;
if (!fName) {
/* NOTE: earlier fName was allocated as new char[strlen(tmpdir) +
4 + 8 + 1] which was too small on some systems (e.g. luc2)
where pointer strings are 16 chars long. This gave random
segfaults and other mysterious program crashes. Elias changed
the allocation to new char[888] 2008-12-02. */
fName = new char[888];
/* FIXME: Consider different creation of temporary file names. */
sprintf(fName, "%s/LR_%-8p", tmpdir, (void*)this);
}
static mode_t mode = S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH;
int fd = open(fName, O_WRONLY | O_CREAT | O_TRUNC, mode);
if (fd == -1)
throw "Cannot save VarVector";
ssize_t written = 0, toWrite = nvar*2*sizeof(ergo_real);
do_output(LOG_CAT_INFO, LOG_AREA_LR, "save:'%s' writes %u bytes nvar=%d",
fName, toWrite, nvar);
do {
ssize_t ret = write(fd, v + written, toWrite);
if (ret != -1) { /* Handle interrrupted system calls... */
written += ret;
toWrite -= ret;
}
} while (toWrite>0);
close(fd);
onDisk = 1;
}
void
VarVector::release(const char* tmpdir)
{
if(nvar == 0)
return;
if(!onDisk)
save(tmpdir);
delete []v;
v = NULL;
inMemory = 0;
}
/* VarVectorCollection implementation. */
const char *VarVectorCollection::tmpdir = "/tmp";
VarVectorCollection::~VarVectorCollection()
{
if(vecs) delete []vecs;
if(ages) delete []ages;
}
void
VarVectorCollection::setSize(int sz)
{
if(sz > nAllocated) {
delete []vecs; nAllocated = sz; vecs = new VarVector[sz];
delete []ages; ages = new unsigned[sz];
}
nVecs = sz;
}
VarVector&
VarVectorCollection::operator[](int i)
{
if (!vecs[i].inMemory) {
release();
vecs[i].load(tmpdir);
}
ages[i] = currentAge++;
return vecs[i];
}
void
VarVectorCollection::release()
{
if(!diskMode)
return; /* Nothing needs to be done. */
/** Must allow at least two vectors at the same time in memory or
* evil things will happen. */
int oldestIdx = nVecs, used=0;
for(int i=1; i<nVecs; i++) {
if (vecs[i].nvar && vecs[i].inMemory ) {
used++;
if (oldestIdx == nVecs || ages[oldestIdx]>ages[i])
oldestIdx = i;
}
}
if( oldestIdx < nVecs && used>2) {
do_output(LOG_CAT_INFO, LOG_AREA_LR,
"ONE: releases vector no. %d %s",
oldestIdx, vecs[oldestIdx].fName);
vecs[oldestIdx].release(tmpdir);
}
}
void
VarVectorCollection::releaseAll()
{
if(!diskMode)
return; /* Nothing needs to be done. */
if (diskMode) {
do_output(LOG_CAT_INFO, LOG_AREA_LR, "releaseAll called.");
}
for(int i=0; i<nVecs; i++) {
if (vecs[i].nvar > 0 && vecs[i].inMemory ) {
do_output(LOG_CAT_INFO, LOG_AREA_LR, "ALL: releases vector %d with %d", i, i, vecs[i].nvar);
vecs[i].release(tmpdir);
}
}
}
/** increase the dimension of the matrix without losing the data. */
void
SmallMatrix::expand(int newSize)
{
if(newSize > nsize) {
ergo_real *m = new ergo_real[newSize*newSize];
for(int i=0; i<nsize; i++)
for(int j=0; j<nsize; j++)
m[j + i*newSize] = mat[j + i*nsize];
delete []mat;
mat = m;
nsize = newSize;
}
}
/** Initialize the solver by computing the diagonal of the E2 operator
as needed for preconditioning. */
LRSolver::LRSolver(int aNbast, int aNocc,
const ergo_real *fock_matrix,
const ergo_real *s)
: convThreshold(1e-3), maxSubspaceSize(MVEC),
eSub(MVEC), sSub(MVEC),
xSub(new ergo_real[MVEC]),
nbast(aNbast), nocc(aNocc),
vects(MVEC), Avects(MVEC),
fdiag(NULL), cmo(NULL)
{
if(fock_matrix) setE2diag(nbast, nocc, fock_matrix, s);
}
void
VarVector::setFromFull(int nbast, int nocc, const ergo_real *full_mat)
{
int nvirt = nbast - nocc;
nvar = nocc*nvirt;
inMemory = 1;
onDisk = 0;
if(nvar == 0) throw "No variables - no excitations";
if(v) delete []v;
v = new ergo_real[2*nvar];
if(!full_mat)
return;
int idx =0;
for(int col=0; col<nocc; col++) {
for(int row=0; row<nvirt; row++)
v[idx + row] = full_mat[nocc+row + col*nbast];
idx += nvirt;
}
for(int row=0; row<nocc; row++) {
for(int col=0; col<nvirt; col++)
v[idx + col] = full_mat[row + (nocc + col)*nbast];
idx += nvirt;
}
}
void
VarVector::setFull(int nbast, int nocc, ergo_real *full_mat) const
{
int i, j, idx;
int nvirt = nbast-nocc;
idx = 0;
/* first occ columns */
for(j=0; j<nocc; j++) {
for(i=0; i<nocc; i++) full_mat[i + j*nbast] = 0;
for(i=0; i<nvirt; i++) full_mat[nocc+i + j*nbast] = v[i + idx];
idx += nvirt;
}
/* The "other" block */
for(i=0; i<nocc; i++) {
for(j=0; j<nvirt; j++)
full_mat[i + (nocc+j)*nbast] = v[j + idx];
idx += nvirt;
}
/* Zero the remaining part */
for(j=nocc; j<nbast; j++)
for(i=nocc; i<nbast; i++) full_mat[i + j*nbast] = 0;
}
/** Uses symmetric orthogonalization to orthonormalize itself (x y)
with the swapped vector (y x). It is achieved by performing a
following transformation: av = [ x y; y x]; s = av'*av [v, e] =
eig(s); e=diag(e)' a = av* v*diag(e.^-0.5)*v'.
It may happen that X=Y (ovl=0) - one such case is running Hartree
approximation. In that case we set Y=0.
*/
/** */
void VarVector::symorth(void)
{
ergo_real nrm= dot(nvar*2, v, v);
ergo_real ovl= 2*dot(nvar, v, v+nvar )/nrm;
ergo_real x1 = 1+ovl;
ergo_real x2 = 1-ovl;
if(template_blas_fabs(x1)>1e-10 && template_blas_fabs(x2)>1e-10) {
x1 = 0.5 / template_blas_sqrt(x1*nrm);
x2 = 0.5 / template_blas_sqrt(x2*nrm);
ergo_real c1 = (x1 + x2);
ergo_real c2 = (x1 - x2);
for(int i=0; i<nvar; i++) {
ergo_real xi = c1*v[i] + c2*v[i+nvar];
ergo_real yi = c2*v[i] + c1*v[i+nvar];
v[i] = xi;
v[i+nvar] = yi;
}
} else {
do_output(LOG_CAT_INFO, LOG_AREA_LR, "Removing Y part, normfactor = %g", (double)nrm);
ergo_real f = template_blas_sqrt(2.0/nrm);
for(int i=0; i<nvar; i++) {
v[i] = v[i]*f;
v[i+nvar] = 0;
}
}
onDisk = 0;
}
/** pre-condition a vector given an approximation of the E[2] operator
diagonal and a shift of the S[2] operator. */
static void
precondition(VarVector&v, const VarVector& e2diag, ergo_real shift)
{
ergo_real denom;
/* Factors 2 here is shaky - compare against exact E2 diagonal. */
for(int i=0; i<v.nvar; i++) {
denom = e2diag.x()[i] - shift;
if(template_blas_fabs(denom)>0) v.x()[i] /= denom;
denom = e2diag.y()[i] + shift;
if(template_blas_fabs(denom)>0) v.y()[i] /= denom;
}
v.onDisk = 0;
}
/** mat := [mat, D_MO] */
static void
commuteWithDMO(int nbast, int nocc, ergo_real *mat)
{
int col, row;
for(col=0; col<nocc; col++) {
for(row=0; row<nocc; row++) mat[row + col*nbast] = 0;
for(row=nocc; row<nbast; row++) mat[row + col*nbast] *= 2;
}
for(col=nocc; col<nbast; col++) {
for(row=0; row<nocc; row++) mat[row + col*nbast] *= -2;
for(row=nocc; row<nbast; row++) mat[row + col*nbast] = 0;
}
}
#if 0
static void
printmat(int n, const ergo_real *m, const char *name)
{
printf("Printing matrix %s\n", name);
for(int i=0; i<n; i++) {
for(int j=0; j<n; j++)
printf("%10.5f", m[i + j*n]);
puts("");
}
}
/** Compute c := beta*c + alpha*op(a)*op(b) */
static void
dgemm(int n, const char *at, const ergo_real *a,
const char *bt, const ergo_real *b,
ergo_real alpha, ergo_real beta, ergo_real *c)
{
int i, j, k;
for(j=0; j<n; j++)
for(i=0; i<n; i++) {
/* c may be uninitialized here if beta == 0 */
if(beta == 0.0) c[i + j*n] = 0;
else c[i + j*n] *= beta;
switch(*at) {
case 'N':
case 'n':
switch(*bt) {
case 'N':
case 'n':
for(k=0; k<n; k++) c[i + j*n] += alpha*a[i + k*n]*b[k + j*n];
break;
case 'T':
case 't':
for(k=0; k<n; k++) c[i + j*n] += alpha*a[i + k*n]*b[j + k*n];
break;
}
break;
case 'T':
case 't':
switch(*bt) {
case 'N':
case 'n':
for(k=0; k<n; k++) c[i + j*n] += alpha*a[k + i*n]*b[k + j*n];
break;
case 'T':
case 't':
for(k=0; k<n; k++) c[i + j*n] += alpha*a[k + i*n]*b[j + k*n];
break;
}
}
}
}
#endif
static inline void
gemm(int n, const char *at, const ergo_real *a,
const char *bt, const ergo_real *b,
ergo_real alpha, ergo_real beta, ergo_real *c)
{
mat::gemm(at, bt, &n, &n, &n,
&alpha, a, &n,
b, &n, &beta, c, &n);
}
/** res := f*res + [a, b] */
static void
commute(int nbast, const ergo_real *a, const ergo_real *b,
ergo_real f, ergo_real *res)
{
gemm(nbast, "N", a, "N", b, 1, f, res);
gemm(nbast, "N", b, "N", a, -1, 1, res);
}
/* computes ao := cmo*mo*cmo' */
void
LRSolver::mo2ao(int nbast, const ergo_real *mo, ergo_real *ao) const
{
assert(cmo);
ergo_real *tmp = new ergo_real[nbast*nbast];
gemm(nbast, "N", cmo, "N", mo, 1, 0, tmp);
gemm(nbast, "N", tmp, "T", cmo, 1, 0, ao);
delete []tmp;
}
/** computes mo := cmo'*ao*cmo */
void
LRSolver::ao2mo(int nbast, const ergo_real *ao, ergo_real *mo) const
{
assert(cmo);
ergo_real *tmp = new ergo_real[nbast*nbast];
gemm(nbast, "T", cmo, "N", ao, 1, 0, tmp);
gemm(nbast, "N", tmp, "N", cmo, 1, 0, mo);
delete []tmp;
}
void
LRSolver::load_F_MO(ergo_real *fmat) const
{
int row, col;
for(col=0; col<nbast; col++) {
for(row=0; row<col; row++) fmat[row + col*nbast] = 0;
fmat[col + col*nbast] = fdiag[col];
for(row=col+1; row<nbast; row++) fmat[row + col*nbast] = 0;
}
}
/** extends the subspace with v and its transformed vector Av. The
eSub and sSub projected matrices are modified as well. We do not
store explicitely the swapped vectors (y x), only the (x y)
combination. */
void
LRSolver::addToSpace(VarVectorCollection& v, E2Evaluator& e2)
{
VarVector Av;
if(subspaceSize + 2*v.size()>maxSubspaceSize)
throw "addToSpace: subspace size exceeded";
int i, j;
int orig_size = subspaceSize;
for(int ivec=0; ivec<v.size(); ivec++) {
precondition(v[ivec], e2diag, getPreconditionerShift(ivec));
/* orthogonalize */
for(i=0; i<subspaceSize; i+=2) {
ergo_real prod = v[ivec] * vects[i];
if(template_blas_fabs(prod)>1e-10) v[ivec] += -prod*vects[i];
prod = v[ivec] * swapXY(vects[i]);
if(template_blas_fabs(prod)>1e-10) v[ivec] += -prod*swapXY(vects[i]);
}
v[ivec].symorth();
v.releaseAll();
vects.releaseAll();
if(!lintrans(e2, v[ivec], Av)) throw "E[2]*x failed";
vects[subspaceSize] = v[ivec];
Avects[subspaceSize] = Av;
//vects[subspaceSize+1] = swapXY(v[ivec]);
//Avects[subspaceSize+1] = swapXY(Av);
subspaceSize += 2;
}
/* compute missing elements of the space */
for(i=orig_size; i<subspaceSize; i+=2)
for(j=0; j<subspaceSize; j+=2) {
#if 1
ergo_real eiXjX = dot(Avects[i].nvar, Avects[i].x(), vects[j].x());
ergo_real eiXjY = dot(Avects[i].nvar, Avects[i].x(), vects[j].y());
ergo_real eiYjX = dot(Avects[i].nvar, Avects[i].y(), vects[j].x());
ergo_real eiYjY = dot(Avects[i].nvar, Avects[i].y(), vects[j].y());
ergo_real siXjX = 2*dot(vects[i].nvar, vects[i].x(), vects[j].x());
ergo_real siXjY = 2*dot(vects[i].nvar, vects[i].x(), vects[j].y());
ergo_real siYjX = 2*dot(vects[i].nvar, vects[i].y(), vects[j].x());
ergo_real siYjY = 2*dot(vects[i].nvar, vects[i].y(), vects[j].y());
eSub[i][j] = eSub[j][i] = eiXjX + eiYjY;
eSub[i][j+1] = eSub[j+1][i] = eiXjY + eiYjX;
eSub[i+1][j] = eSub[j][i+1] = eiYjX + eiXjY;
eSub[i+1][j+1] = eSub[j+1][i+1] = eiYjY + eiXjX;
sSub[i][j] = sSub[j][i] = siXjX - siYjY;
sSub[i][j+1] = sSub[j+1][i] = siXjY - siYjX;
sSub[i+1][j] = sSub[j][i+1] = siYjX - siXjY;
sSub[i+1][j+1] = sSub[j+1][i+1] = siYjY - siXjX;
#else
ergo_real eij = Avects[i] * vects[j];
eSub[i][j] = eSub[j][i] = eij;
ergo_real sij = vects[i] * sTimes(vects[j]);
sSub[i][j] = sSub[j][i] = sij;
#endif
}
}
/** performs the linear transformation of the vector with E[2]
operator. */
bool
LRSolver::lintrans(E2Evaluator& e2, const VarVector& v, VarVector& Av) const
{
bool res;
ergo_real *transDens = new ergo_real[nbast*nbast];
v.setFull(nbast, nocc, transDens);
commuteWithDMO(nbast,nocc,transDens); /* transDens := [transDens, D_MO] */
ergo_real *dmat = new ergo_real[nbast*nbast];
ergo_real *fmat = new ergo_real[nbast*nbast];
mo2ao(nbast, transDens, dmat); /* dmat := cmo*tranDens*cmo' */
res = e2.transform(dmat, fmat);
ergo_real *f_MO = dmat; dmat = NULL; /* steal another pointer */
ao2mo(nbast, fmat, f_MO);
commuteWithDMO(nbast,nocc,f_MO); /* one contribution is ready... */
load_F_MO(fmat);
commute(nbast, fmat, transDens, 1, f_MO); /* f_MO += [fmat, transDens] */
Av.setFromFull(nbast, nocc, f_MO);
delete []fmat;
delete []dmat;
delete []transDens;
return res;
}
void
LRSolver::increaseSubspaceLimit(int newSize)
{
if(newSize > maxSubspaceSize) {
eSub.expand(newSize);
sSub.expand(newSize);
ergo_real *v = new ergo_real[newSize];
for(int i=0; i<maxSubspaceSize; i++) v[i] = xSub[i];
delete []xSub; xSub = v;
vects.setSize(newSize);
Avects.setSize(newSize);
maxSubspaceSize = newSize;
}
}
/** solve the problem as defined by the subclass. This involves
generation of the initial guess, symmetric orthogonalization,
subspace extension routines, etc. */
bool
LRSolver::solve(E2Evaluator& e2, bool diskMode)
{
VarVector Av;
VarVectorCollection v;
Util::TimeMeter tm;
vects.setDiskMode(diskMode);
v.setDiskMode(diskMode);
getInitialGuess(v);
do_output(LOG_CAT_INFO, LOG_AREA_LR,
"LRSolver::solve entered with Nvariables: %d DiskMode: %s",
v[0].nvar*2, diskMode ? "YES" : "NO");
//computeExactE2Diag(e2); return false;
subspaceSize = 0;
for(int step = 0; step < maxSubspaceSize/2; step++) {
/* Subspace extension phase */
addToSpace(v, e2); /* Add the new vectors and precompute the
* projected operators as well. */
/* residue estimation phase */
if(!getResidual(v))
break;
ergo_real nr = template_blas_sqrt(v[0] * v[0]);
printf("Step %2d: ssize: %3d |r|=%13.6g shift=%10.6f\n",
step+1, subspaceSize, (double)nr, (double)getPreconditionerShift(0));
do_output(LOG_CAT_INFO, LOG_AREA_LR,
"Step %2d: ssize: %3d |r|=%13.6g shift=%10.6f",
step+1, subspaceSize, (double)nr, (double)getPreconditionerShift(0));
}
tm.print(LOG_AREA_LR, "LRSolver::solve");
return true;
}
void
LRSolver::computeExactE2Diag(E2Evaluator& e2)
{
VarVector v, Av;
int nvar = (nbast-nocc)*nocc;
v.setSize(nvar); Av.setSize(nvar);
for(int i=0; i<nvar*2; i++) {
v = 0; v[i] = 1;
if(!lintrans(e2, v, Av))
throw "Linear Transformation with E[2] failed";
printf("%4i: %20.6g %20.6g\n", i, (double)e2diag[i], (double)Av[i]);
}
}
ergo_real
LRSolver::setE2diag(int nbast, int nocc,
const ergo_real *fock_matrix,
const ergo_real *s)
{
static const int ITYPE = 1;
assert(fdiag == NULL); /* prevent double-initialization */
int i, j;
int lwork = 18*nbast;
std::vector<ergo_real> work(lwork);
std::vector<ergo_real> ovl(nbast*nbast);
ergo_real ret;
fdiag = new ergo_real[nbast];
cmo = new ergo_real[nbast*nbast];
if(nocc<=0) throw "setE2diag::At least one orbital must be occupied";
for(i=nbast*nbast-1; i>=0; i--) {
cmo[i] = fock_matrix[i];
ovl[i] = s[i];
}
//printmat(nbast, cmo, "fock");
//printmat(nbast, ovl, "ovl");
mat::sygv(&ITYPE, "V", "L", &nbast, cmo, &nbast, &ovl[0],
&nbast, fdiag, &work[0], &lwork, &i);
if(i == 0) {
std::vector<ergo_real> ediff(nbast*nbast);
for(i=0; i<nbast; i++) {
for(j=0; j<i; j++) ediff[j + nbast*i] = -(fdiag[j]-fdiag[i])*2.0;
ediff[i + nbast*i] = 0; /* not used */
for(j=i+1; j<nbast; j++) ediff[j + nbast*i] = +(fdiag[j]-fdiag[i])*2.0;
}
e2diag.setFromFull(nbast, nocc, &ediff[0]);
ret = fdiag[nocc]-fdiag[nocc-1];
do_output(LOG_CAT_INFO, LOG_AREA_LR, "HOMO-LUMO gap: %20.15f eV",
(double)ret / UNIT_one_eV);
return ret;
} else {
do_output(LOG_CAT_ERROR, LOG_AREA_LR, "setE2diag: mat::sygv failed with info=%d", i);
throw "setE2diag::dsygv failed";
}
}
/** get_av_minus_freq_sv scans through transformed vectors creating
their linear combination and returning r := Av - f*Sv
*/
void
LRSolver::getAvMinusFreqSv(ergo_real f, ergo_real *weights,
VarVector& r)
{
int i;
r = weights[0]*Avects[0];
r += weights[1]*swapXY(Avects[0]);
for(i=2; i<subspaceSize; i+=2) {
r += weights[i] *Avects[i];
r += weights[i+1]*swapXY(Avects[i]);
}
if(f != 0) {
for(i=0; i<subspaceSize; i+=2) {
ergo_real w = -f*weights[i];
r += w*sTimes(vects[i]);
w = -f*weights[i+1];
r += w*sTimes(swapXY(vects[i]));
}
}
}
/** Projects a full vector onto the reduced space. */
void
LRSolver::projectOnSubspace(const VarVector& full, ergo_real *w)
{
for(int i=0; i<subspaceSize; i+=2) {
ergo_real vXrX = dot(full.nvar, vects[i].x(), full.x());
ergo_real vXrY = dot(full.nvar, vects[i].x(), full.y());
ergo_real vYrX = dot(full.nvar, vects[i].y(), full.x());
ergo_real vYrY = dot(full.nvar, vects[i].y(), full.y());
w[i] = vXrX + vYrY;
w[i+1] = vYrX + vXrY;
}
}
void
LRSolver::buildVector(const ergo_real *w, VarVector& full) /* const */
{
full.setSize(vects[0].nvar);
full = 0;
for(int i=0; i<subspaceSize; i+=2) {
for(int j=0; j<full.nvar; j++) {
full[j] += w[i]*vects[i][j] + w[i+1]*vects[i][j + full.nvar];
full[j+full.nvar] += w[i]*vects[i][j+full.nvar] + w[i+1]*vects[i][j];
}
}
}
void
LRSolver::operToVec(OneElOperator& oper, VarVector& res) const
{
ergo_real *buf = new ergo_real[nbast*nbast];
ergo_real *tmp = new ergo_real[nbast*nbast];
oper.getOper(buf);
ao2mo(nbast, buf, tmp);
delete []buf;
commuteWithDMO(nbast, nocc, tmp);
res.setFromFull(nbast, nocc, tmp);
delete []tmp;
}
/* ===================================================================
* Solver of Linear Set of Equations
* =================================================================== */
/** returns the initial guess for the linear set of equations. The
explicit value is obtained from the diagonal assumption for the
E[2] operator and is:
(E[2]- freq*S[2])*g = Y ->
g = Y./(E[2]-freq*S[2])
*/
int
SetOfEqSolver::getInitialGuess(VarVectorCollection& guess)
{
int nvar = e2diag.nvar;
if(rhs.nvar == 0)
throw "SetOfEqSolver::getInitialGuess() called without RHS set";
guess.setSize(1);
VarVector& v = guess[0];
v.setSize(nvar);
/* In principle, the best approximation to the solution we can get
is RHS divided by the approximation of the diagonal but the last
operation is done when preconditioning which is the first op that
we do. That's why we set the guess to the right side with
switched sign for the lower part only. */
for(int i=0; i<nvar; i++) {
v[i ] = 0.5*rhs[i];
v[i+nvar] = -0.5*rhs[i+nvar];
}
return 0;
}
/** multiplies current solution by some vector. If such contractions
are to be done several times, perhaps a single vector solution
should be created and only then contracted with rhs vector. */
ergo_real
SetOfEqSolver::multiplyXtimesVec(const VarVector& rhs) /* const */
{
ergo_real *proj = new ergo_real[subspaceSize];
projectOnSubspace(rhs, proj);
ergo_real res = 0;
for(int i=0; i<subspaceSize; i++)
res += xSub[i] * proj[i];
delete []proj;
return res;
}
/** get the residual of the set of linear equations. This is done in
two steps: Solution in the subspace: Xsub = (eSub-freq*Ssub)\\Ysub;
Residual vector is: residualv= (Av-freq*Sv)*Xsub - Y;
*/
bool
SetOfEqSolver::getResidual(VarVectorCollection& residualv)
{
if(rhs.nvar == 0)
throw "SetOfEqSolver::getResidual() called without RHS set";
ergo_real *A = new ergo_real[subspaceSize*subspaceSize];
for(int j=0; j<subspaceSize; j++) {
for(int i=0; i<subspaceSize; i++)
A[i+j*subspaceSize] =
eSub[j][i] - frequency*sSub[j][i];
}
// printmat(subspaceSize, A, "A");
solve_linear_equation_system(subspaceSize, A, rhsSub, &xSub[0]);
delete []A;
residualv.setSize(1);
getAvMinusFreqSv(frequency, xSub, residualv[0]);
for(int i=0; i<2*rhs.nvar; i++)
residualv[0][i] -= rhs[i];
ergo_real n = template_blas_sqrt(residualv[0]*residualv[0]);
xTimesRHS = multiplyXtimesVec(rhs);
do_output(LOG_CAT_INFO, LOG_AREA_LR,
"SetOfEqSolver::getResidual: norm of the residual: %g X*RHS: %g",
(double)n, (double)xTimesRHS);
return n >= convThreshold;
}
/** expands above the default limit */
void SetOfEqSolver::increaseSubspaceLimit(int newSize)
{
if(newSize > maxSubspaceSize) {
ergo_real *v = new ergo_real[newSize];
for(int i=0; i<maxSubspaceSize; i++) v[i] = rhsSub[i];
delete []rhsSub; rhsSub = v;
LRSolver::increaseSubspaceLimit(newSize);
}
}
void
SetOfEqSolver::setRHS(OneElOperator& oper)
{
ergo_real *res = new ergo_real[nbast*nbast];
ergo_real *tmp = new ergo_real[nbast*nbast];
oper.getOper(res);
ao2mo(nbast, res, tmp);
commuteWithDMO(nbast, nocc, tmp);
rhs.setFromFull(nbast, nocc, tmp);
delete []res;
delete []tmp;
}
void
SetOfEqSolver::addToSpace(VarVectorCollection& vecs, E2Evaluator& e2)
{
int orig_size = subspaceSize;
LRSolver::addToSpace(vecs, e2);
for(int i=orig_size; i<subspaceSize; i+=2) {
ergo_real rXX = dot(rhs.nvar, rhs.x(), vects[i].x());
ergo_real rXY = dot(rhs.nvar, rhs.x(), vects[i].y());
ergo_real rYX = dot(rhs.nvar, rhs.y(), vects[i].x());
ergo_real rYY = dot(rhs.nvar, rhs.y(), vects[i].y());
rhsSub[i] = rXX + rYY;
rhsSub[i+1] = rXY + rYX;
}
}
/** computes polarizability by contracting the response vector with
specified operator */
ergo_real
SetOfEqSolver::getPolarisability(OneElOperator& oper) /* const */
{
VarVector x;
operToVec(oper, x);
return multiplyXtimesVec(x);
}
/* ===================================================================
* Solver of Eigenvalue Problem
* =================================================================== */
/** get residual of the eigenvalue problem. This is done in following steps:
Solution in the subspace: [ Xsub, lambda ] = eig(eSub, Ssub);
Pick first positive eigenvalue l1 = lambda(step+1);
Pick corresponding eigenvector: Xsub = Xsub(:,step+1);
Residual Vector: residualv = (Av-l1*Sv)*Xsub;
*/
bool
EigenSolver::getResidual(VarVectorCollection& residualv)
{
ergo_real *e = new ergo_real[subspaceSize*subspaceSize];
ergo_real *s = new ergo_real[subspaceSize*subspaceSize];
ergo_real *ev = new ergo_real[subspaceSize*subspaceSize];
ergo_real *alphar = new ergo_real[subspaceSize];
ergo_real *alphai = new ergo_real[subspaceSize];
ergo_real *beta = new ergo_real[subspaceSize];
int lwork = 16*subspaceSize;
ergo_real *work = new ergo_real[lwork], *dummy = NULL;
int i, j;
for(i=0; i<subspaceSize; i++)
for(j=0; j<subspaceSize; j++) {
e[j+i*subspaceSize] = eSub[i][j];
s[j+i*subspaceSize] = sSub[i][j];
}
//printmat(subspaceSize, e, "Reduced E[2]");
//printmat(subspaceSize, s, "Reduced S[2]");
mat::ggev("N","V", &subspaceSize, e, &subspaceSize, s, &subspaceSize,
alphar, alphai, beta, /* eigenvalues */
dummy, &subspaceSize, ev, &subspaceSize, /* eigenvectors */
work, &lwork, &i);
delete []work;
delete []s;
delete []e;
if(i == 0) {
std::vector<int> idx(subspaceSize);
for(i=0; i<subspaceSize; i++) {
ritzVals[i] = alphar[i]/beta[i];
//printf("BEFORE %d: (%g + i %g) / %g -> %10.5f\n", i,
// alphar[i], alphai[i], beta[i], ritzVals[i]);
idx[i] = i;
}
for(int ival=0; ival<nStates; ival++) {
int cidx = ival;
for(i=ival+1; i< subspaceSize; i++) {
if( ritzVals[i]>0 &&
(ritzVals[cidx]<=0 || ritzVals[i] < ritzVals[cidx]) )
cidx = i;
}
ergo_real tr = ritzVals[ival];
ritzVals[ival] = ritzVals[cidx]; ritzVals[cidx] = tr;
int ti = idx[ival]; idx[ival] = idx[cidx]; idx[cidx] = ti;
}
/* Copy the reduced-space solutions to the private matrix, making
sure they are normalized properly - very important if
transition moments are to be computed. ggev returns the vectors
with somewhat peculiar normalization... */
if(last_ev) delete []last_ev;
last_ev = new ergo_real[subspaceSize*nStates];
ergo_real *tmp = new ergo_real[subspaceSize];
for(i=0; i<nStates; i++) {
for(int j=0; j<subspaceSize; j++)
last_ev[j + i*subspaceSize] = ev[j + idx[i]*subspaceSize];
/* mat:gemv(sSub, .. */
for(int j=0; j<subspaceSize; j++) {
ergo_real s = 0;
for(int k=0; k<subspaceSize; k++)
s += sSub[j][k]*last_ev[k+i*subspaceSize];
tmp[j] = s;
}
ergo_real n =
1.0/template_blas_sqrt(dot(subspaceSize, tmp, last_ev + i*subspaceSize));
for(int j=0; j<subspaceSize; j++)
last_ev[j + i*subspaceSize] *=n;
}
delete []tmp;
/* actually compute the residuals... */
int nadded=0;
for(i=nConverged; i<nStates; i++) {
if(ritzVals[i]<0) {
printf("CRITICAL!\n");
throw "Sorting error";
/* FIXME: no good starting guess!? We should have been
seeding with more vectors! */
}
getAvMinusFreqSv(ritzVals[i], last_ev + i*subspaceSize,
residualv[nadded]);
//ergo_real n = template_blas_sqrt(residualv[0]*residualv[0]);
ergo_real n = template_blas_sqrt(residualv[nadded]*residualv[nadded]);
if(n<convThreshold) {
nConverged++;
do_output(LOG_CAT_INFO, LOG_AREA_LR, "Converged %d root %g with n=%g",
nConverged, (double)ritzVals[i], (double)n);
} else {
do_output(LOG_CAT_INFO, LOG_AREA_LR,
"Trial vector for %2i th root needed orig %3i, "
"n=%g ritz=%f",
i+1, idx[i], (double)n, (double)ritzVals[i]);
nadded++;
}
}
residualv.setSize(nadded);
delete []alphar;
delete []alphai;
delete []beta;
delete []ev;
return nConverged<nStates;
} else {
delete []alphar;
delete []alphai;
delete []beta;
delete []ev;
printf("i=%i\n", i);
do_output(LOG_CAT_ERROR, LOG_AREA_LR, "dsygv failed with info=%i\n", i);
throw "Solving projected problem failed. This is not normal.";
}
}
/** expands above the default limit */
void EigenSolver::increaseSubspaceLimit(int newSize)
{
if(newSize > maxSubspaceSize) {
ergo_real *v = new ergo_real[newSize];
for(int i=0; i<maxSubspaceSize; i++) v[i] = ritzVals[i];
delete []ritzVals; ritzVals = v;
v = new ergo_real[newSize];
for(int i=0; i<maxSubspaceSize; i++) v[i] = transMoms2[i];
delete []transMoms2; transMoms2 = v;
LRSolver::increaseSubspaceLimit(newSize);
}
}
/** generate the starting guess for the HOMO-LUMO excitation by
placing one in th the right position. Do it the lazy way: creating
VarVector directly risks inconsistiency when the internal
representation of VarVector changes. */
int
EigenSolver::getInitialGuess(VarVectorCollection& v)
{
#if 0
ergo_real *m = new ergo_real[nbast*nbast];
memset(m, 0, nbast*nbast*sizeof(ergo_real));
m[nocc + (nocc-1)*nbast] = 1;
v.setFromFull(nbast, nocc, m);
delete []m;
#else
v.setSize(nStates);
int *idx = new int[e2diag.nvar];
ergo_real *val = new ergo_real[e2diag.nvar];
for(int i=0; i<e2diag.nvar; i++)
val[i] = e2diag[i];
for(int j=0; j<e2diag.nvar; j++) idx[j] = j;
for(int i=0; i<nStates; i++) {
int cidx = i;
for(int j=i+1; j<e2diag.nvar; j++)
if(val[j]<val[cidx]) cidx = j;
ergo_real tr = val[i]; val[i] = val[cidx]; val[cidx] = tr;
int ti = idx[cidx]; idx[cidx] = idx[i]; idx[i] = ti;
v[i].setSize(e2diag.nvar);
v[i] = 0; /* zero the vector */
v[i][ti] = 1;
}
delete []idx;
delete []val;
#endif
return 1;
}
void
EigenSolver::computeMoments(OneElOperator& dipx,
OneElOperator& dipy,
OneElOperator& dipz)
{
int state, x;
ergo_real *proj = new ergo_real[subspaceSize];
OneElOperator *ops[] = { &dipx, &dipy, &dipz };
for(state=0; state<nStates; state++) transMoms2[state] = 0;
for(x=0; x<3; x++) {
VarVector op;
#if 1
operToVec(*ops[x], op);
#else
ergo_real *bufao = new ergo_real[nbast*nbast];
ergo_real *bufmo = new ergo_real[nbast*nbast];
ops[x]->getOper(bufao);
ao2mo(nbast, bufao, bufmo);
printmat(nbast, bufmo, "OPERATOR IN MO");
op.setFromFull(nbast, nocc, bufmo);
delete []bufao;
delete []bufmo;
#endif
projectOnSubspace(op, proj);
for(state=0; state<nStates; state++) {
ergo_real c = dot(subspaceSize, last_ev + state*subspaceSize, proj);
transMoms2[state] += c*c;
printf("STATE %d TRANSITION MOMENT: %20g ENERGY %20f eV\n",
state+1, (double)c, (double)(ritzVals[state]/UNIT_one_eV));
}
}
delete []proj;
}
} /* end of namespace LR */
|