1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
|
/* Ergo, version 3.8.2, a program for linear scaling electronic structure
* calculations.
* Copyright (C) 2023 Elias Rudberg, Emanuel H. Rubensson, Pawel Salek,
* and Anastasia Kruchinina.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Primary academic reference:
* Ergo: An open-source program for linear-scaling electronic structure
* calculations,
* Elias Rudberg, Emanuel H. Rubensson, Pawel Salek, and Anastasia
* Kruchinina,
* SoftwareX 7, 107 (2018),
* <http://dx.doi.org/10.1016/j.softx.2018.03.005>
*
* For further information about Ergo, see <http://www.ergoscf.org>.
*/
/** @file basicmath_test.cc Tests some basic math functions
such as template_blas_sqrt() template_blas_log() etc to
see that they are working properly and that they deliver
the expected accuracy. */
#include <stdio.h>
#include <stdlib.h>
#include <limits>
#include "realtype.h"
#include "template_blas_common.h"
#include "matInclude.h"
static ergo_real find_approx_smallest_number() {
ergo_real x = 1;
int count = 0;
while(1) {
ergo_real next = x * 0.9;
if(!(next > 0))
break;
if(!(next < x))
break;
x = next;
count++;
if(count > 1000000)
throw std::runtime_error("Error in basicmath_test.cc: max loop interations reached in find_approx_smallest_number().");
}
return x;
}
static ergo_real find_approx_largest_number() {
ergo_real x = 1;
int count = 0;
while(1) {
ergo_real next = x * 1.1;
ergo_real next2 = next * 1.1;
if(!(next2>next)) // here we check if next2 is inf
break;
if(!(next > 0))
break;
if(!(next > x))
break;
x = next;
count++;
if(count > 1000000)
throw std::runtime_error("Error in basicmath_test.cc: max loop interations reached in find_approx_largest_number().");
}
return x;
}
static void verify_within_bounds(ergo_real x, ergo_real xmin, ergo_real xmax) {
if(x >= xmin && x <= xmax)
return;
throw std::runtime_error("Error in basicmath_test.cc: verify_within_bounds failed. inf or nan number encountered?");
}
int main(int argc, char *argv[])
{
int failed = 0;
int verbose = getenv("VERBOSE") != NULL;
ergo_real machine_epsilon = mat::getMachineEpsilon<ergo_real>();
printf("machine_epsilon = %g Run with env VERBOSE for more info.\n",
(double)machine_epsilon);
ergo_real approx_smallest_number = find_approx_smallest_number();
ergo_real approx_largest_number = find_approx_largest_number();
if(verbose) {
int ten_to_approx_what_power = -1;
while(template_blas_pow((ergo_real)10, (ergo_real)ten_to_approx_what_power) > approx_smallest_number)
ten_to_approx_what_power--;
printf("approx_smallest_number is approx 10 to power %d\n", ten_to_approx_what_power);
ten_to_approx_what_power = 1;
while(template_blas_pow((ergo_real)10, (ergo_real)ten_to_approx_what_power) < approx_largest_number)
ten_to_approx_what_power++;
printf("approx_largest_number is approx 10 to power %d\n", ten_to_approx_what_power);
}
/* Test sqrt function for a set of random numbers. */
ergo_real maxabsdiff_sqrt = 0;
for(int i = 0; i < 7777; i++)
{
ergo_real x = (ergo_real)rand() / RAND_MAX;
ergo_real x2 = x * x;
ergo_real sqrt_of_x2 = template_blas_sqrt(x2);
ergo_real diff = sqrt_of_x2 - x;
ergo_real absdiff = diff;
if(absdiff < 0)
absdiff *= -1;
verify_within_bounds(absdiff, 0, approx_largest_number);
if(absdiff > maxabsdiff_sqrt)
maxabsdiff_sqrt = absdiff;
}
if(verbose)
printf("maxabsdiff for template_blas_sqrt: %g\n",
(double)maxabsdiff_sqrt);
ergo_real maxabsdiff_sqrt_requested = machine_epsilon;
if(maxabsdiff_sqrt > maxabsdiff_sqrt_requested)
{
printf("ERROR: template_blas_sqrt() not accurate enough!\n");
printf("maxabsdiff_sqrt: %g, requested: %g\n", (double)maxabsdiff_sqrt, (double)maxabsdiff_sqrt_requested);
failed++;
}
else {
if(verbose)
printf("template_blas_sqrt() accuracy OK.\n");
}
/* Test exp function by computing exp(a)*exp(b) and comparing to exp(a+b) for a list of random pairs (a,b) */
ergo_real maxabsdiff_exp = 0;
for(int i = 0; i < 7777; i++)
{
ergo_real a = (ergo_real)rand() / RAND_MAX;
ergo_real b = (ergo_real)rand() / RAND_MAX;
ergo_real product_of_exps = template_blas_exp(a) * template_blas_exp(b);
ergo_real exp_of_sum = template_blas_exp(a + b);
ergo_real diff = product_of_exps - exp_of_sum;
ergo_real absdiff = diff;
if(absdiff < 0)
absdiff *= -1;
verify_within_bounds(absdiff, 0, approx_largest_number);
if(absdiff > maxabsdiff_exp)
maxabsdiff_exp = absdiff;
}
if(verbose)
printf("maxabsdiff for template_blas_exp: %g\n", (double)maxabsdiff_exp);
ergo_real maxabsdiff_exp_requested = machine_epsilon * 15;
if(maxabsdiff_exp > maxabsdiff_exp_requested)
{
printf("ERROR: template_blas_exp() not accurate enough!\n");
printf("maxabsdiff_exp: %g, requested: %g\n", (double)maxabsdiff_exp, (double)maxabsdiff_exp_requested);
failed++;
}
else {
if(verbose)
printf("template_blas_exp() accuracy OK.\n");
}
/* Test log function by computing log(a) + log(b) and comparing to log(a*b) for a list of random pairs (a,b) */
ergo_real maxabsdiff_log = 0;
for(int i = 0; i < 7777; i++)
{
ergo_real a = (ergo_real)rand() / RAND_MAX + (ergo_real)0.1;
ergo_real b = (ergo_real)rand() / RAND_MAX + (ergo_real)0.1;
ergo_real sum_of_logs = template_blas_log(a) + template_blas_log(b);
ergo_real log_of_product = template_blas_log(a * b);
ergo_real diff = sum_of_logs - log_of_product;
ergo_real absdiff = diff;
if(absdiff < 0)
absdiff *= -1;
verify_within_bounds(absdiff, 0, approx_largest_number);
if(absdiff > maxabsdiff_log)
maxabsdiff_log = absdiff;
}
if(verbose)
printf("maxabsdiff for template_blas_log: %g\n", (double)maxabsdiff_log);
ergo_real maxabsdiff_log_requested = machine_epsilon * 10;
if(maxabsdiff_log > maxabsdiff_log_requested)
{
printf("ERROR: template_blas_log() not accurate enough!\n");
printf("maxabsdiff_log: %g, requested: %g\n", (double)maxabsdiff_log, (double)maxabsdiff_log_requested);
failed++;
}
else {
if(verbose)
printf("template_blas_log() accuracy OK.\n");
}
/* Test log10 function by computing log10(a) + log10(b) and comparing to log10(a*b) for a list of random pairs (a,b) */
ergo_real maxabsdiff_log10 = 0;
for(int i = 0; i < 7777; i++)
{
ergo_real a = (ergo_real)rand() / RAND_MAX;
ergo_real b = (ergo_real)rand() / RAND_MAX;
ergo_real sum_of_log10s = template_blas_log10(a) + template_blas_log10(b);
ergo_real log10_of_product = template_blas_log10(a * b);
ergo_real diff = sum_of_log10s - log10_of_product;
ergo_real absdiff = diff;
if(absdiff < 0)
absdiff *= -1;
verify_within_bounds(absdiff, 0, approx_largest_number);
if(absdiff > maxabsdiff_log10)
maxabsdiff_log10 = absdiff;
}
if(verbose)
printf("maxabsdiff for template_blas_log10: %g\n", (double)maxabsdiff_log10);
ergo_real maxabsdiff_log10_requested = machine_epsilon * 10;
if(maxabsdiff_log10 > maxabsdiff_log10_requested)
{
printf("ERROR: template_blas_log10() not accurate enough!\n");
printf("maxabsdiff_log10: %g, requested: %g\n", (double)maxabsdiff_log10, (double)maxabsdiff_log10_requested);
failed++;
}
else {
if(verbose)
printf("template_blas_log10() accuracy OK.\n");
}
/* Test erf function by comparing with a series expression */
ergo_real piBBP = template_blas_compute_pi_BBP((ergo_real)0);
ergo_real maxabsdiff_erf = 0;
for(int i = 0; i < 777; i++)
{
ergo_real x = (ergo_real)rand() / RAND_MAX;
ergo_real minus_1_to_pow_n = 1;
ergo_real n_factorial = 1;
ergo_real x_to_pow_2n_plus_1 = x;
int n = 0;
ergo_real sum = 0;
while(((ergo_real)1 / n_factorial) > machine_epsilon)
{
sum += (minus_1_to_pow_n / ( n_factorial * (ergo_real)( 2 * n + 1) )) * x_to_pow_2n_plus_1;
n++;
minus_1_to_pow_n *= -1;
n_factorial *= n;
x_to_pow_2n_plus_1 *= x * x;
}
ergo_real series_result = ((ergo_real)2 / template_blas_sqrt(piBBP)) * sum;
ergo_real erf_value = template_blas_erf(x);
ergo_real diff = series_result - erf_value;
ergo_real absdiff = diff;
if(absdiff < 0)
absdiff *= -1;
verify_within_bounds(absdiff, 0, approx_largest_number);
if(absdiff > maxabsdiff_erf)
maxabsdiff_erf = absdiff;
} // END FOR i
if(verbose)
printf("maxabsdiff for template_blas_erf: %g\n", (double)maxabsdiff_erf);
ergo_real maxabsdiff_erf_requested = machine_epsilon * 10;
if(maxabsdiff_erf > maxabsdiff_erf_requested)
{
printf("ERROR: template_blas_erf() not accurate enough!\n");
printf("maxabsdiff_erf: %g, requested: %g\n", (double)maxabsdiff_erf, (double)maxabsdiff_erf_requested);
failed++;
}
else {
if(verbose)
printf("template_blas_erf() accuracy OK.\n");
}
/* Test erfc function by computing erf(x) + erfc(x) and comparing to 1 */
ergo_real maxabsdiff_erfc = 0;
for(int i = 0; i < 777; i++)
{
ergo_real x = (ergo_real)rand() / RAND_MAX;
ergo_real erf_of_x = template_blas_erf(x);
ergo_real erfc_of_x = template_blas_erfc(x);
ergo_real sum = erf_of_x + erfc_of_x;
ergo_real diff = sum - (ergo_real)1.0;
ergo_real absdiff = diff;
if(absdiff < 0)
absdiff *= -1;
verify_within_bounds(absdiff, 0, approx_largest_number);
if(absdiff > maxabsdiff_erfc)
maxabsdiff_erfc = absdiff;
} // END FOR i
if(verbose)
printf("maxabsdiff for template_blas_erfc: %g\n", (double)maxabsdiff_erfc);
ergo_real maxabsdiff_erfc_requested = machine_epsilon * 1;
if(maxabsdiff_erfc > maxabsdiff_erfc_requested)
{
printf("ERROR: template_blas_erfc() not accurate enough!\n");
printf("maxabsdiff_erfc: %g, requested: %g\n", (double)maxabsdiff_erfc, (double)maxabsdiff_erfc_requested);
failed++;
}
else {
if(verbose)
printf("template_blas_erfc() accuracy OK.\n");
}
/* Test sin function by comparing with a series expression */
ergo_real maxabsdiff_sin = 0;
for(int i = 0; i < 777; i++)
{
ergo_real x = (ergo_real)rand() / RAND_MAX;
ergo_real minus_1_to_pow_n = 1;
ergo_real two_n_plus1_factorial = 1;
ergo_real x_to_pow_2n_plus_1 = x;
int n = 0;
ergo_real sum = 0;
while(((ergo_real)1 / two_n_plus1_factorial) > machine_epsilon)
{
sum += (minus_1_to_pow_n / ( two_n_plus1_factorial )) * x_to_pow_2n_plus_1;
n++;
minus_1_to_pow_n *= -1;
two_n_plus1_factorial *= 2*n * (2*n+1);
x_to_pow_2n_plus_1 *= x * x;
}
ergo_real series_result = sum;
ergo_real sin_value = template_blas_sin(x);
ergo_real diff = series_result - sin_value;
ergo_real absdiff = diff;
if(absdiff < 0)
absdiff *= -1;
verify_within_bounds(absdiff, 0, approx_largest_number);
if(absdiff > maxabsdiff_sin)
maxabsdiff_sin = absdiff;
} // END FOR i
if(verbose)
printf("maxabsdiff for template_blas_sin: %g\n", (double)maxabsdiff_sin);
ergo_real maxabsdiff_sin_requested = machine_epsilon * 5;
if(maxabsdiff_sin > maxabsdiff_sin_requested)
{
printf("ERROR: template_blas_sin() not accurate enough!\n");
printf("maxabsdiff_sin: %g, requested: %g\n", (double)maxabsdiff_sin, (double)maxabsdiff_sin_requested);
failed++;
}
else {
if(verbose)
printf("template_blas_sin() accuracy OK.\n");
}
/* Test cos function by computing cos(x) and comparing to sin(x+pi/2) */
ergo_real maxabsdiff_cos = 0;
for(int i = 0; i < 777; i++)
{
ergo_real x = (ergo_real)rand() / RAND_MAX;
ergo_real cos_of_x = template_blas_cos(x);
ergo_real sin_of_x_plus_pihalf = template_blas_sin(x + piBBP/2);
ergo_real diff = cos_of_x - sin_of_x_plus_pihalf;
ergo_real absdiff = diff;
if(absdiff < 0)
absdiff *= -1;
verify_within_bounds(absdiff, 0, approx_largest_number);
if(absdiff > maxabsdiff_cos)
maxabsdiff_cos = absdiff;
} // END FOR i
if(verbose)
printf("maxabsdiff for template_blas_cos: %g\n", (double)maxabsdiff_cos);
ergo_real maxabsdiff_cos_requested = machine_epsilon * 3;
if(maxabsdiff_cos > maxabsdiff_cos_requested)
{
printf("ERROR: template_blas_cos() not accurate enough!\n");
printf("maxabsdiff_cos: %g, requested: %g\n", (double)maxabsdiff_cos, (double)maxabsdiff_cos_requested);
failed++;
}
else {
if(verbose)
printf("template_blas_cos() accuracy OK.\n");
}
/* Test fabs function by computing x + fabs(x) for some negative numbers and comparing to 0 */
ergo_real maxabsdiff_fabs = 0;
for(int i = 0; i < 777; i++)
{
ergo_real x = (ergo_real)rand() / RAND_MAX - (ergo_real)1;
ergo_real fabs_of_x = template_blas_fabs(x);
ergo_real sum = x + fabs_of_x;
ergo_real diff = sum - (ergo_real)0;
ergo_real absdiff = diff;
if(absdiff < 0)
absdiff *= -1;
verify_within_bounds(absdiff, 0, approx_largest_number);
if(absdiff > maxabsdiff_fabs)
maxabsdiff_fabs = absdiff;
} // END FOR i
if(verbose)
printf("maxabsdiff for template_blas_fabs: %g\n", (double)maxabsdiff_fabs);
ergo_real maxabsdiff_fabs_requested = machine_epsilon * 1;
if(maxabsdiff_fabs > maxabsdiff_fabs_requested)
{
printf("ERROR: template_blas_fabs() not accurate enough!\n");
printf("maxabsdiff_fabs: %g, requested: %g\n", (double)maxabsdiff_fabs, (double)maxabsdiff_fabs_requested);
failed++;
}
else {
if(verbose)
printf("template_blas_fabs() accuracy OK.\n");
}
/* Test pow function by computing pow(a,b) and comparing to exp(b*log(a)) */
ergo_real maxabsdiff_pow = 0;
for(int i = 0; i < 777; i++)
{
ergo_real a = (ergo_real)rand() / RAND_MAX;
ergo_real b = (ergo_real)rand() / RAND_MAX;
ergo_real pow_ab = template_blas_pow(a, b);
ergo_real exp_b_log_a = template_blas_exp(b*template_blas_log(a));
ergo_real diff = pow_ab - exp_b_log_a;
ergo_real absdiff = diff;
if(absdiff < 0)
absdiff *= -1;
verify_within_bounds(absdiff, 0, approx_largest_number);
if(absdiff > maxabsdiff_pow)
maxabsdiff_pow = absdiff;
} // END FOR i
if(verbose)
printf("maxabsdiff for template_blas_pow: %g\n", (double)maxabsdiff_pow);
ergo_real maxabsdiff_pow_requested = machine_epsilon * 2;
if(maxabsdiff_pow > maxabsdiff_pow_requested)
{
printf("ERROR: template_blas_pow() not accurate enough!\n");
printf("maxabsdiff_pow: %g, requested: %g\n", (double)maxabsdiff_pow, (double)maxabsdiff_pow_requested);
failed++;
}
else {
if(verbose)
printf("template_blas_pow() accuracy OK.\n");
}
if (!failed)
puts("Basic math functions test succeeded.");
else
puts("Basic math functions test FAILED.");
return failed;
}
|