1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<!-- This document was generated using DocBuilder 3.3.2 -->
<HTML>
<HEAD>
<TITLE>gb_sets</TITLE>
<SCRIPT type="text/javascript" src="../../../../doc/erlresolvelinks.js">
</SCRIPT>
<STYLE TYPE="text/css">
<!--
.REFBODY { margin-left: 13mm }
.REFTYPES { margin-left: 8mm }
-->
</STYLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF" TEXT="#000000" LINK="#0000FF" VLINK="#FF00FF"
ALINK="#FF0000">
<!-- refpage -->
<CENTER>
<A HREF="http://www.erlang.se">
<IMG BORDER=0 ALT="[Ericsson AB]" SRC="min_head.gif">
</A>
<H1>gb_sets</H1>
</CENTER>
<H3>MODULE</H3>
<DIV CLASS=REFBODY>
gb_sets
</DIV>
<H3>MODULE SUMMARY</H3>
<DIV CLASS=REFBODY>
General Balanced Trees
</DIV>
<H3>DESCRIPTION</H3>
<DIV CLASS=REFBODY>
<P> An implementation of ordered sets using Prof. Arne Andersson's
General Balanced Trees. This can be much more efficient than
using ordered lists, for larger sets, but depends on the
application. See notes below for details.
</DIV>
<H3>Complexity note</H3>
<DIV CLASS=REFBODY>
<P> The complexity on set operations is bounded by either O(|S|) or
O(|T| * log(|S|)), where S is the largest given set, depending
on which is fastest for any particular function call. For
operating on sets of almost equal size, this implementation is
about 3 times slower than using ordered-list sets directly. For
sets of very different sizes, however, this solution can be
arbitrarily much faster; in practical cases, often between 10
and 100 times. This implementation is particularly suited for
accumulating elements a few at a time, building up a large set
(more than 100-200 elements), and repeatedly testing for
membership in the current set.
<P> As with normal tree structures, lookup (membership testing),
insertion and deletion have logarithmic complexity.
</DIV>
<H3>EXPORTS</H3>
<P><A NAME="empty/0"><STRONG><CODE>empty()</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Returns new, empty set.
<P> Alias: new(), for compatibility with `sets'.
</DIV>
<P><A NAME="is_empty/1"><STRONG><CODE>is_empty(S)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Returns 'true' if S is an empty set, and 'false' otherwise.
</DIV>
<P><A NAME="size/1"><STRONG><CODE>size(S)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Returns the number of nodes in the set as an
integer. Returns 0 (zero) if the set is empty.
</DIV>
<P><A NAME="singleton/1"><STRONG><CODE>singleton(X)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Returns a set containing only the element X.
</DIV>
<P><A NAME="is_member/2"><STRONG><CODE>is_member(X, S)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Returns `true' if element X is a member of set S, and
`false' otherwise.
<P> Alias: is_element(), for compatibility with `sets'.
</DIV>
<P><A NAME="insert/2"><STRONG><CODE>insert(X, S)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Inserts element X into set S, returns the new set. Assumes
that the element is not present in S.
</DIV>
<P><A NAME="add/2"><STRONG><CODE>add(X, S)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Adds element X to set S, returns the new set. If X is
already an element in S, nothing is changed.
<P> Alias: add_element(), for compatibility with `sets'.
</DIV>
<P><A NAME="delete/2"><STRONG><CODE>delete(X, S)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Removes element X from set S, returns new set. Assumes that
the element exists in the set.
<P> Alias: del_element(), for compatibility with `sets'.
</DIV>
<P><A NAME="delete_any/2"><STRONG><CODE>delete_any(X, T)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Removes key X from set S if the key is present in the set,
otherwise does nothing; returns new set.
</DIV>
<P><A NAME="balance/1"><STRONG><CODE>balance(S)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Rebalances the tree representation of S. Note that this is
rarely necessary, but may be motivated when a large number
of elements have been deleted from the tree without further
insertions. Rebalancing could then be forced in order to
minimise lookup times, since deletion only does not
rebalance the tree.
</DIV>
<P><A NAME="union/2"><STRONG><CODE>union(S1, S2)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Returns a new set that contains each element that is in
either S1 or S2 or both, and no other elements.
</DIV>
<P><A NAME="union/1"><STRONG><CODE>union(Ss)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Returns a new set that contains each element that is in at
least one of the sets in the list Ss, and no other elements.
</DIV>
<P><A NAME="intersection/2"><STRONG><CODE>intersection(S1, S2)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Returns a new set that contains each element that is in both
S1 and S2, and no other elements.
</DIV>
<P><A NAME="intersection/1"><STRONG><CODE>intersection(Ss)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Returns a new set that contains each element that is in all
of the sets in the list Ss, and no other elements.
</DIV>
<P><A NAME="difference/2"><STRONG><CODE>difference(S1, S2)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Returns a new set that contains each element in S1 that is
not also in S2, and no other elements.
<P> Alias: subtract(), for compatibility with `sets'.
</DIV>
<P><A NAME="is_subset/2"><STRONG><CODE>is_subset(S1, S2)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Returns `true' if each element in S1 is also a member of S2,
and `false' otherwise.
</DIV>
<P><A NAME="to_list/1"><STRONG><CODE>to_list(S)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Returns an ordered list of all elements in set S. The list
never contains duplicates (of course).
</DIV>
<P><A NAME="from_list/1"><STRONG><CODE>from_list(List)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Creates a set containing all elements in List, where List
may be unordered and contain duplicates.
</DIV>
<P><A NAME="from_ordset/1"><STRONG><CODE>from_ordset(L)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Turns an ordered-set list L into a set. The list must not
contain duplicates.
</DIV>
<P><A NAME="smallest/1"><STRONG><CODE>smallest(S)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Returns the smallest element in set S. Assumes that
the set S is nonempty.
</DIV>
<P><A NAME="largest/1"><STRONG><CODE>largest(S)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Returns the largest element in set S. Assumes that
the set S is nonempty.
</DIV>
<P><A NAME="take_smallest/1"><STRONG><CODE>take_smallest(S)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Returns {X, S1}, where X is the smallest element in set S,
and S1 is the set S with element X deleted. Assumes that the
set S is nonempty.
</DIV>
<P><A NAME="take_largest/1"><STRONG><CODE>take_largest(S)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Returns {X, S1}, where X is the largest element in
set S, and S1 is the set S with element X deleted. Assumes that the
set S is nonempty.
</DIV>
<P><A NAME="iterator/1"><STRONG><CODE>iterator(S)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Returns an iterator that can be used for traversing the
entries of set S; see `next'. The implementation of this is
very efficient; traversing the whole set using `next' is
only slightly slower than getting the list of all elements
using `to_list' and traversing that. The main advantage of
the iterator approach is that it does not require the
complete list of all elements to be built in memory at one
time.
</DIV>
<P><A NAME="next/1"><STRONG><CODE>next(T)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Returns {X, T1} where X is the smallest element referred to
by the iterator T, and T1 is the new iterator to be used for
traversing the remaining elements, or the atom `none' if no
elements remain.
</DIV>
<P><A NAME="filter/2"><STRONG><CODE>filter(P, S)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Filters set S using predicate function P. Included for
compatibility with `sets'.
</DIV>
<P><A NAME="fold/3"><STRONG><CODE>fold(F, A, S)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Folds function F over set S with A as the initial
accumulator. Included for compatibility with `sets'.
</DIV>
<P><A NAME="is_set/1"><STRONG><CODE>is_set(S)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Returns 'true' if S appears to be a set, and 'false'
otherwise. Not recommended; included for compatibility with
`sets'.
</DIV>
<H3>SEE ALSO</H3>
<DIV CLASS=REFBODY>
<P> <A HREF="gb_trees.html">gb_trees(3)</A>,
<A HREF="ordsets.html">ordsets(3)</A>,
<A HREF="sets.html">sets(3)</A>
</DIV>
<H3>AUTHORS</H3>
<DIV CLASS=REFBODY>
Richard Carlsson - support@erlang.ericsson.se<BR>
</DIV>
<CENTER>
<HR>
<SMALL>stdlib 1.13.2<BR>
Copyright © 1991-2004
<A HREF="http://www.erlang.se">Ericsson AB</A><BR>
</SMALL>
</CENTER>
</BODY>
</HTML>
|