1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<!-- This document was generated using DocBuilder 3.3.2 -->
<HTML>
<HEAD>
<TITLE>gb_trees</TITLE>
<SCRIPT type="text/javascript" src="../../../../doc/erlresolvelinks.js">
</SCRIPT>
<STYLE TYPE="text/css">
<!--
.REFBODY { margin-left: 13mm }
.REFTYPES { margin-left: 8mm }
-->
</STYLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF" TEXT="#000000" LINK="#0000FF" VLINK="#FF00FF"
ALINK="#FF0000">
<!-- refpage -->
<CENTER>
<A HREF="http://www.erlang.se">
<IMG BORDER=0 ALT="[Ericsson AB]" SRC="min_head.gif">
</A>
<H1>gb_trees</H1>
</CENTER>
<H3>MODULE</H3>
<DIV CLASS=REFBODY>
gb_trees
</DIV>
<H3>MODULE SUMMARY</H3>
<DIV CLASS=REFBODY>
General Balanced Trees
</DIV>
<H3>DESCRIPTION</H3>
<DIV CLASS=REFBODY>
<P> An efficient implementation of Prof. Arne Andersson's General
Balanced Trees. These have no storage overhead compared to
unbalaced binary trees, and their performance is in general
better than AVL trees.
</DIV>
<H3>Data structure</H3>
<DIV CLASS=REFBODY>
<P> Data structure:
<PRE>
- {Size, Tree}, where `Tree' is composed of nodes of the form:
- {Key, Value, Smaller, Bigger}, and the "empty tree" node:
- nil.
</PRE>
<P>There is no attempt to balance trees after deletions. Since
deletions don't increase the height of a tree, this should be
OK.
<P> Original balance condition <STRONG>h(T) <= ceil(c * log(|T|))</STRONG>
has been changed to the similar (but not quite equivalent)
condition <STRONG>2 ^ h(T) <= |T| ^ c</STRONG>. This should also be OK.
<P> Performance is comparable to the AVL trees in the Erlang book
(and faster in general due to less overhead); the difference is
that deletion works for these trees, but not for the book's
trees. Behaviour is logaritmic (as it should be).
</DIV>
<H3>EXPORTS</H3>
<P><A NAME="empty/0"><STRONG><CODE>empty()</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Returns a new, empty tree.
</DIV>
<P><A NAME="is_empty/1"><STRONG><CODE>is_empty(T)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Returns 'true' if T is an empty tree, and 'false' otherwise.
</DIV>
<P><A NAME="size/1"><STRONG><CODE>size(T)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Returns the number of nodes in the tree as an
integer. Returns 0 (zero) if the tree is empty.
</DIV>
<P><A NAME="lookup/2"><STRONG><CODE>lookup(X, T)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Looks up key X in tree T; returns {value, V}, or `none' if
the key is not present.
</DIV>
<P><A NAME="get/2"><STRONG><CODE>get(X, T)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Retrieves the value stored with key X in tree T. Assumes
that the key is present in the tree, crashes otherwise.
</DIV>
<P><A NAME="insert/3"><STRONG><CODE>insert(X, V, T)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Inserts key X with value V into tree T; returns the new
tree. Assumes that the key is *not* present in the tree,
crashes otherwise.
</DIV>
<P><A NAME="update/3"><STRONG><CODE>update(X, V, T)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Updates key X to value V in tree T; returns the new
tree. Assumes that the key is present in the tree.
</DIV>
<P><A NAME="enter/3"><STRONG><CODE>enter(X, V, T)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Inserts key X with value V into tree T if the key is not
present in the tree, otherwise updates key X to value V in
T. Returns the new tree.
</DIV>
<P><A NAME="delete/2"><STRONG><CODE>delete(X, T)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Removes key X from tree T; returns new tree. Assumes that
the key is present in the tree, crashes otherwise.
</DIV>
<P><A NAME="delete_any/2"><STRONG><CODE>delete_any(X, T)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Removes key X from tree T if the key is present in the tree,
otherwise does nothing; returns new tree.
</DIV>
<P><A NAME="balance/1"><STRONG><CODE>balance(T)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Rebalances tree T. Note that this is rarely necessary, but
may be motivated when a large number of entries have been
deleted from the tree without further
insertions. Rebalancing could then be forced in order to
minimise lookup times, since deletion only does not
rebalance the tree.
</DIV>
<P><A NAME="is_defined/2"><STRONG><CODE>is_defined(X, T)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Returns `true' if key X is present in tree T, and `false'
otherwise.
</DIV>
<P><A NAME="keys/1"><STRONG><CODE>keys(T)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Returns an ordered list of all keys in tree T.
</DIV>
<P><A NAME="values/1"><STRONG><CODE>values(T)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Returns the list of values for all keys in tree T,
sorted by their corresponding keys. Duplicates are not removed.
</DIV>
<P><A NAME="to_list/1"><STRONG><CODE>to_list(T)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Returns an ordered list of {Key, Value} pairs for all keys
in tree T.
</DIV>
<P><A NAME="from_orddict/1"><STRONG><CODE>from_orddict(L)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Turns an ordered list L of {Key, Value} pairs into a
tree. The list must not contain duplicate keys.
</DIV>
<P><A NAME="smallest/1"><STRONG><CODE>smallest(T)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Returns {X, V}, where X is the smallest key in tree T,
and V is the value associated with X in T. Assumes that the tree T
is nonempty.
</DIV>
<P><A NAME="largest/1"><STRONG><CODE>largest(T)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Returns {X, V}, where X is the largest key in tree T,
and V is the value associated with X in T. Assumes that the tree T
is nonempty.
</DIV>
<P><A NAME="take_smallest/1"><STRONG><CODE>take_smallest(T)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Returns {X, V, T1}, where X is the smallest key in tree T, V
is the value associated with X in T, and T1 is the tree T
with key X deleted. Assumes that the tree T is nonempty.
</DIV>
<P><A NAME="take_largest/1"><STRONG><CODE>take_largest(T)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Returns {X, V, T1}, where X is the largest key in tree T, V
is the value associated with X in T, and T1 is the tree T
with key X deleted. Assumes that the tree T is nonempty.
</DIV>
<P><A NAME="iterator/1"><STRONG><CODE>iterator(T)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Returns an iterator that can be used for traversing the
entries of tree T; see `next'. The implementation of this is
very efficient; traversing the whole tree using `next' is
only slightly slower than getting the list of all elements
using `to_list' and traversing that. The main advantage of
the iterator approach is that it does not require the
complete list of all elements to be built in memory at one
time.
</DIV>
<P><A NAME="next/1"><STRONG><CODE>next(S)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Returns {X, V, S1} where X is the smallest key referred to
by the iterator S, and S1 is the new iterator to be used for
traversing the remaining entries, or the atom `none' if no
entries remain.
</DIV>
<H3>SEE ALSO</H3>
<DIV CLASS=REFBODY>
<P> <A HREF="gb_sets.html">gb_sets(3)</A>,
<A HREF="dict.html">dict(3)</A>,
</DIV>
<H3>AUTHORS</H3>
<DIV CLASS=REFBODY>
Sven-Olof Nystrom, Richard Carlsson - support@erlang.ericsson.se<BR>
</DIV>
<CENTER>
<HR>
<SMALL>stdlib 1.13.2<BR>
Copyright © 1991-2004
<A HREF="http://www.erlang.se">Ericsson AB</A><BR>
</SMALL>
</CENTER>
</BODY>
</HTML>
|