1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<!-- This document was generated using DocBuilder 3.3.3 -->
<HTML>
<HEAD>
<TITLE>Bit Syntax</TITLE>
<SCRIPT type="text/javascript" src="../../doc/erlresolvelinks.js">
</SCRIPT>
</HEAD>
<BODY BGCOLOR="#FFFFFF" TEXT="#000000" LINK="#0000FF" VLINK="#FF00FF"
ALINK="#FF0000">
<CENTER>
<A HREF="http://www.erlang.se"><IMG BORDER=0 ALT="[Ericsson AB]" SRC="min_head.gif"></A>
</CENTER>
<A NAME="4"><!-- Empty --></A>
<H2>4 Bit Syntax</H2>
<A NAME="4.1"><!-- Empty --></A>
<H3>4.1 Introduction</H3>
<P>In Erlang a Bin is used for constructing binaries and matching
binary patterns. A Bin is written with the following syntax:
<PRE>
<<E1, E2, ... En>>
</PRE>
<P>A Bin is a low-level sequence of bytes. The purpose of a Bin is
to be able to, from a high level, construct a binary,
<PRE>
Bin = <<E1, E2, ... En>>
</PRE>
<P>in which case all elements must be bound, or to match a binary,
<PRE>
<<E1, E2, ... En>> = Bin
</PRE>
<P>where <CODE>Bin</CODE> is bound, and where the elements are bound or
unbound, as in any match.
<P>Each element specifies a certain <STRONG>segment</STRONG> of the binary.
A segment is a set of contiguous bits of the binary (not
necessarily on a byte boundary). The first element specifies
the initial segment, the second element specifies the following
segment etc.
<P>The following examples illustrate how binaries are constructed
or matched, and how elements and tails are specified.<A NAME="4.1.1"><!-- Empty --></A>
<H4>4.1.1 Examples</H4>
<P><STRONG>Example 1: </STRONG>A binary can be constructed from a set of
constants or a string literal:
<PRE>
Bin11 = <<1, 17, 42>>,
Bin12 = <<"abc">>
</PRE>
<P>yields binaries of size 3; <CODE>binary_to_list(Bin11)</CODE>
evaluates to <CODE>[1, 17, 42]</CODE>, and
<CODE>binary_to_list(Bin12)</CODE> evaluates to <CODE>[97, 98, 99]</CODE>.
<P><STRONG>Example 2: </STRONG>Similarly, a binary can be constructed
from a set of bound variables:
<PRE>
A = 1, B = 17, C = 42,
Bin2 = <<A, B, C:16>>
</PRE>
<P>yields a binary of size 4, and <CODE>binary_to_list(Bin2)</CODE>
evaluates to <CODE>[1, 17, 00, 42]</CODE> too. Here we used a
<STRONG>size expression</STRONG> for the variable <CODE>C</CODE> in order to
specify a 16-bits segment of <CODE>Bin2</CODE>.
<P><STRONG>Example 3: </STRONG>A Bin can also be used for matching: if
<CODE>D</CODE>, <CODE>E</CODE>, and <CODE>F</CODE> are unbound variables, and
<CODE>Bin2</CODE> is bound as in the former example,
<PRE>
<<D:16, E, F/binary>> = Bin2
</PRE>
<P>yields <CODE>D = 273</CODE>, <CODE>E = 00</CODE>, and F binds to a binary
of size 1: <CODE>binary_to_list(F) = [42]</CODE>.
<P><STRONG>Example 4: </STRONG>The following is a more elaborate example
of matching, where <CODE>Dgram</CODE> is bound to the consecutive
bytes of an IP datagram of IP protocol version 4, and where we
want to extract the header and the data of the datagram:
<PRE>
-define(IP_VERSION, 4).
-define(IP_MIN_HDR_LEN, 5).
DgramSize = size(Dgram),
case Dgram of
<<?IP_VERSION:4, HLen:4, SrvcType:8, TotLen:16,
ID:16, Flgs:3, FragOff:13,
TTL:8, Proto:8, HdrChkSum:16,
SrcIP:32,
DestIP:32, RestDgram/binary>> when HLen>=5, 4*HLen=<DgramSize ->
OptsLen = 4*(HLen - ?IP_MIN_HDR_LEN),
<<Opts:OptsLen/binary,Data/binary>> = RestDgram,
...
end.
</PRE>
<P>Here the segment corresponding to the <CODE>Opts</CODE> variable
has a <STRONG>type modifier</STRONG> specifying that <CODE>Opts</CODE> should
bind to a binary. All other variables have the default type
equal to unsigned integer.
<P>An IP datagram header is of variable length, and its length -
measured in the number of 32-bit words - is given in
the segment corresponding to <CODE>HLen</CODE>, the minimum value of
which is 5. It is the segment corresponding to <CODE>Opts</CODE>
that is variable: if <CODE>HLen</CODE> is equal to 5, <CODE>Opts</CODE>
will be an empty binary.
<P>The tail variables <CODE>RestDgram</CODE> and <CODE>Data</CODE> bind to
binaries, as all tail variables do. Both may bind to empty
binaries.
<P>If the first 4-bits segment of <CODE>Dgram</CODE> is not equal to
4, or if <CODE>HLen</CODE> is less than 5, or if the size of
<CODE>Dgram</CODE> is less than <CODE>4*HLen</CODE>, the match of
<CODE>Dgram</CODE> fails.<A NAME="4.2"><!-- Empty --></A>
<H3>4.2 A Lexical Note</H3>
<P>Note that "<CODE>B=<<1>></CODE>" will be interpreted as
"<CODE>B =< <1>></CODE>", which is a syntax error.
The correct way to write the expression is
"<CODE>B = <<1>></CODE>".<A NAME="4.3"><!-- Empty --></A>
<H3>4.3 Segments</H3>
<P>Each segment has the following general syntax:
<P><CODE>Value:Size/TypeSpecifierList</CODE>
<P>Both the <CODE>Size</CODE> and the <CODE>TypeSpecifier</CODE> or both may be
omitted; thus the following variations are allowed:
<P><CODE>Value</CODE>
<P><CODE>Value:Size</CODE>
<P><CODE>Value/TypeSpecifierList</CODE>
<P>Default values will be used for missing specifications.
The default values are described in the section "Defaults" below.
<P>Used in binary construction, the <CODE>Value</CODE> part is any
expression. Used in binary matching, the <CODE>Value</CODE> part must
be a literal or variable. You can read more about
the <CODE>Value</CODE> part in the sections about constructing
binaries and matching binaries.
<P>The <CODE>Size</CODE> part of the segment multiplied by the unit in
the <CODE>TypeSpecifierList</CODE> (described below) gives the number
of bits for the segment. In construction, <CODE>Size</CODE> is any
expression that evaluates to an integer. In matching,
<CODE>Size</CODE> must be a constant expression or a variable.
<P>The <CODE>TypeSpecifierList</CODE> is a list of type specifiers
separated by hyphens.
<P>
<DL>
<DT>
Type
</DT>
<DD>
The type can be <CODE>integer</CODE>, <CODE>float</CODE>, or
<CODE>binary</CODE>.
</DD>
<DT>
Signedness
</DT>
<DD>
The signedness specification can be either <CODE>signed</CODE>
or <CODE>unsigned</CODE>. Note that signedness only matters for
matching.
</DD>
<DT>
Endianness
</DT>
<DD>
The endianness specification can be either <CODE>big</CODE>,
<CODE>little</CODE>, or <CODE>native</CODE>. Native-endian means that
the endian will be resolved at load time to be either
big-endian or little-endian, depending on what is "native"
for the CPU that the Erlang machine is run on.
</DD>
<DT>
Unit
</DT>
<DD>
The unit size is given as <CODE>unit:IntegerLiteral</CODE>.
The allowed range is 1-256. It will be multiplied by
the <CODE>Size</CODE> specifier to give the effective size of
the segment.
</DD>
</DL>
<P>Example:
<PRE>
X:4/little-signed-integer-unit:8
</PRE>
<P>This element has a total size of 4*8 = 32 bits, and it contains
a signed integer in little-endian order.<A NAME="4.4"><!-- Empty --></A>
<H3>4.4 Defaults</H3>
<P>The default type for a segment is integer. The default
type does not depend on the value, even if the value is a
literal. For instance, the default type in '<CODE><<3.14>></CODE>' is
integer, not float.
<P>The default <CODE>Size</CODE> depends on the type. For integer it is
8. For float it is 64. For binary it is all of the binary. In
matching, this default value is only valid for the very last
element. All other binary elements in matching must have a size
specification.
<P>The default unit depends on the the type. For integer and
float it is 1. For binary it is 8.
<P>The default signedness is <CODE>unsigned</CODE>.
<P>The default endianness is <CODE>big</CODE>.<A NAME="4.5"><!-- Empty --></A>
<H3>4.5 Constructing Binaries</H3>
<P>This section describes the rules for constructing binaries using
the bit syntax. Unlike when constructing lists or tuples,
the construction of a binary can fail with a <CODE>badarg</CODE>
exception.
<P>There can be zero or more segments in a binary to be
constructed. The expression '<CODE><<>></CODE>' constructs a zero
length binary.
<P>Each segment in a binary can consist of zero or more bits.
There are no alignment rules for individual segments, but
the total number of bits in all segments must be evenly
divisible by 8, or in other words, the resulting binary must
consist of a whole number of bytes. An <CODE>badarg</CODE> exception
will be thrown if the resulting binary is not byte-aligned.
Example:
<PRE>
<<X:1,Y:6>>
</PRE>
<P>The total number of bits is 7, which is not evenly divisible by
8; thus, there will be <CODE>badarg</CODE> exception (and a compiler
warning as well). The following example
<PRE>
<<X:1,Y:6,Z:1>>
</PRE>
<P>will successfully construct a binary of 8 bits, or one byte.
(Provided that all of X, Y and Z are integers.)
<P>As noted earlier, segments have the following general syntax:
<P><CODE>Value:Size/TypeSpecifierList</CODE>
<P>When constructing binaries, <CODE>Value</CODE> and <CODE>Size</CODE> can be
any Erlang expression. However, for syntactical reasons, both
<CODE>Value</CODE> and <CODE>Size</CODE> must be enclosed in parenthesis if
the expression consists of anything more than a single literal
or variable. The following gives a compiler syntax error:
<PRE>
<<X+1:8>>
</PRE>
<P>This expression must be rewritten to
<PRE>
<<(X+1):8>>
</PRE>
<P>in order to be accepted by the compiler.<A NAME="4.5.1"><!-- Empty --></A>
<H4>4.5.1 Including Literal Strings</H4>
<P>As syntactic sugar, an literal string may be written instead
of a element.
<PRE>
<<"hello">>
</PRE>
<P>which is syntactic sugar for
<PRE>
<<$h,$e,$l,$l,$o>>
</PRE>
<A NAME="4.6"><!-- Empty --></A>
<H3>4.6 Matching Binaries</H3>
<P>This section describes the rules for matching binaries using
the bit syntax.
<P>There can be zero or more segments in a binary pattern.
A binary pattern can occur in every place patterns are allowed,
also inside other patterns. Binary patterns cannot be nested.
<P>The pattern '<CODE><<>></CODE>' matches a zero length binary.
<P>Each segment in a binary can consist of zero or more bits.
<P>A segment of type <CODE>binary</CODE> must have a size evenly
divisible by 8.
<P>This means that the following head will never match:
<PRE>
foo(<<X:7/binary-unit:1,Y:1/binary-unit:1>>) ->
</PRE>
<P>As noted earlier, segments have the following general syntax:
<P><CODE>Value:Size/TypeSpecifierList</CODE>
<P>When matching <CODE>Value</CODE> value must be either a variable or
an integer or floating point literal. Expressions are not
allowed.
<P><CODE>Size</CODE> must be an integer literal, or a previously bound
variable. Note that the following is not allowed:
<PRE>
foo(N, <<X:N,T/binary>>) ->
{X,T}.
</PRE>
<P>The two occurrences of <CODE>N</CODE> are not related. The compiler
will complain that the <CODE>N</CODE> in the size field is unbound.
<P>The correct way to write this example is like this:
<PRE>
foo(N, Bin) ->
<<X:N,T/binary>> = Bin,
{X,T}.
</PRE>
<A NAME="4.6.1"><!-- Empty --></A>
<H4>4.6.1 Getting the Rest of the Binary</H4>
<P>To match out the rest of binary, specify a binary field
without size:
<PRE>
foo(<<A:8,Rest/binary>>) ->
</PRE>
<P>As always, the size of the tail must be evenly divisible by 8.
<A NAME="4.7"><!-- Empty --></A>
<H3>4.7 Traps and Pitfalls</H3>
<P>Assume that we need a function that creates a binary out of a
list of triples of integers. A first (inefficient) version of
such a function could look like this:
<PRE>
triples_to_bin(T) ->
triples_to_bin(T, <<>>).
triples_to_bin([{X,Y,Z} | T], Acc) ->
triples_to_bin(T, <<Acc/binary, X:32, Y:32, Z:32>>); % inefficient
triples_to_bin([], Acc) ->
Acc.
</PRE>
<P>The reason for the inefficiency of this function is that for
each triple, the binary constructed so far (<CODE>Acc</CODE>) is
copied. (Note: The original bit syntax prototype avoided
the copy operation by using segmented binaries, which are not
implemented in R7.)
<P>The efficient way to write this function in R7 is:
<PRE>
triples_to_bin(T) ->
triples_to_bin(T, []).
triples_to_bin([{X,Y,Z} | T], Acc) ->
triples_to_bin(T, [<<X:32, Y:32, Z:32>> | Acc]);
triples_to_bin([], Acc) ->
list_to_binary(lists:reverse(Acc)).
</PRE>
<P>Note that <CODE>list_to_binary/1</CODE> handles deep lists of binaries
and small integers. (This fact was previously undocumented.)<CENTER>
<HR>
<SMALL>
Copyright © 1991-2006
<A HREF="http://www.erlang.se">Ericsson AB</A><BR>
</SMALL>
</CENTER>
</BODY>
</HTML>
|