File: funs.html

package info (click to toggle)
erlang-doc-html 1%3A11.b.2-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 23,284 kB
  • ctags: 10,724
  • sloc: erlang: 505; ansic: 323; makefile: 62; perl: 61; sh: 45
file content (807 lines) | stat: -rw-r--r-- 21,722 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<!-- This document was generated using DocBuilder 3.3.3 -->
<HTML>
<HEAD>
  <TITLE>Funs</TITLE>
  <SCRIPT type="text/javascript" src="../../doc/erlresolvelinks.js">
</SCRIPT>
</HEAD>
<BODY BGCOLOR="#FFFFFF" TEXT="#000000" LINK="#0000FF" VLINK="#FF00FF"
      ALINK="#FF0000">
<CENTER>
<A HREF="http://www.erlang.se"><IMG BORDER=0 ALT="[Ericsson AB]" SRC="min_head.gif"></A>
</CENTER>
<A NAME="2"><!-- Empty --></A>
<H2>2 Funs</H2>
<A NAME="2.1"><!-- Empty --></A>
<H3>2.1 Example 1 - map</H3>

<P>If we want to double every element in a list, we could write a
function named <CODE>double</CODE>:
<PRE>
double([H|T]) -&#62; [2*H|double(T)];
double([])    -&#62; [].
    
</PRE>

<P>This function obviously doubles the argument entered as input
as follows:
<PRE>
&#62; <STRONG>double([1,2,3,4]).</STRONG>
[2,4,6,8]
    
</PRE>

<P>We now add the function <CODE>add_one</CODE>, which adds one to every
element in a list:
<PRE>
add_one([H|T]) -&#62; [H+1|add_one(T)];
add_one([])    -&#62; [].
    
</PRE>

<P>These functions, <CODE>double</CODE> and <CODE>add_one</CODE>, have a very
similar structure. We can exploit this fact and write a function
<CODE>map</CODE> which expresses this similarity:
<PRE>
map(F, [H|T]) -&#62; [F(H)|map(F, T)];
map(F, [])    -&#62; [].

</PRE>

<P>We can now express the functions <CODE>double</CODE> and
<CODE>add_one</CODE> in terms of <CODE>map</CODE> as follows:
<PRE>
double(L)  -&#62; map(fun(X) -&#62; 2*X end, L).
add_one(L) -&#62; map(fun(X) -&#62; 1 + X end, L).
    
</PRE>

<P><CODE>map(F, List)</CODE> is a function which takes a function
<CODE>F</CODE> and a list <CODE>L</CODE> as arguments and returns the new
list which is obtained by applying <CODE>F</CODE> to each of
the elements in <CODE>L</CODE>.
<P>The process of abstracting out the common features of a number
of different programs is called procedural abstraction.
Procedural abstraction can be used in order to write several
different functions which have a similar structure, but differ
only in some minor detail. This is done as follows:
<P>
<OL>

<LI>
write one function which represents the common features of
        these functions
</LI>


<LI>
parameterize the difference in terms of functions which
        are passed as arguments to the common function.
</LI>


</OL>
<A NAME="2.2"><!-- Empty --></A>
<H3>2.2 Example 2 - foreach</H3>

<P>This example illustrates procedural abstraction. Initially, we
show the following two examples written as conventional
functions:
<P>
<OL>

<LI>
all elements of a list are printed onto a stream
</LI>


<LI>
a message is broadcast to a list of processes.
</LI>


</OL>

<PRE>
print_list(Stream, [H|T]) -&#62;
    io:format(Stream, &#34;~p~n&#34;, [H]),
    print_list(Stream, T);
print_list(Stream, []) -&#62;
    true.
    
</PRE>

<PRE>
broadcast(Msg, [Pid|Pids]) -&#62;
    Pid ! Msg,
    broadcast(Msg, Pids);
broadcast(_, []) -&#62;
    true.
    
</PRE>

<P>Both these functions have a very similar structure. They both
iterate over a list doing something to each element in the list.
The &#34;something&#34; has to be carried round as an extra argument to
the function which does this.
<P>The function <CODE>foreach</CODE> expresses this similarity:
<PRE>
foreach(F, [H|T]) -&#62;
    F(H),
    foreach(F, T);
foreach(F, []) -&#62;
    ok.

</PRE>

<P>Using <CODE>foreach</CODE>, <CODE>print_list</CODE> becomes:
<PRE>
foreach(fun(H) -&#62; io:format(S, &#34;~p~n&#34;,[H]) end, L)
    
</PRE>

<P><CODE>broadcast</CODE> becomes:
<PRE>
foreach(fun(Pid) -&#62; Pid ! M end, L)
    
</PRE>

<P><CODE>foreach</CODE> is evaluated for its side-effect and not its
value. <CODE>foreach(Fun ,L)</CODE> calls <CODE>Fun(X)</CODE> for each
element <CODE>X</CODE> in <CODE>L</CODE> and the processing occurs in
the order in which the elements were defined in <CODE>L</CODE>.
<CODE>map</CODE> does not define the order in which its elements are
processed.<A NAME="2.3"><!-- Empty --></A>
<H3>2.3 The Syntax of Funs</H3>

<P>Funs are written with the syntax:
<PRE>
F = fun (Arg1, Arg2, ... ArgN) -&#62;
        ...
    end
    
</PRE>

<P>This creates an anonymous function of <CODE>N</CODE> arguments and
binds it to the variable <CODE>F</CODE>.
<P>If we have already written a function in the same module and
wish to pass this function as an argument, we can use
the following syntax:
<PRE>
F = fun FunctionName/Arity
    
</PRE>

<P>With this form of function reference, the function which is
referred to does not need to be exported from the module.
<P>We can also refer to a function defined in a different module
with the following syntax:
<PRE>
F = {Module, FunctionName}
    
</PRE>

<P>In this case, the function must be exported from the module in
question.
<P>The follow program illustrates the different ways of creating
funs:
<PRE>
-module(fun_test).
-export([t1/0, t2/0, t3/0, t4/0, double/1]).
-import(lists, [map/2]).

t1() -&#62; map(fun(X) -&#62; 2 * X end, [1,2,3,4,5]).

t2() -&#62; map(fun double/1, [1,2,3,4,5]).

t3() -&#62; map({?MODULE, double}, [1,2,3,4,5]).

double(X) -&#62; X * 2.

</PRE>

<P>We can evaluate the fun <CODE>F</CODE> with the syntax:
<PRE>
F(Arg1, Arg2, ..., Argn)
    
</PRE>

<P>To check whether a term is a fun, use the test
<CODE>is_function/1</CODE> in a guard. Example:
<PRE>
f(F, Args) when is_function(F) -&#62;
   apply(F, Args);
f(N, _) when is_integer(N) -&#62;
   N.
    
</PRE>

<P>Funs are a distinct type. The BIFs erlang:fun_info/1,2 can
be used to retrieve information about a fun, and the BIF
erlang:fun_to_list/1 returns a textual representation of a fun.
The check_process_code/2 BIF returns true if the process
contains funs that depend on the old version of a module.
<P>
<TABLE CELLPADDING=4>
  <TR>
    <TD VALIGN=TOP><IMG ALT="Note!" SRC="note.gif"></TD>
    <TD>

<P>In OTP R5 and earlier releases, funs were represented using
        tuples.    </TD>
  </TR>
</TABLE>
<A NAME="2.4"><!-- Empty --></A>
<H3>2.4 Variable Bindings Within a Fun</H3>

<P>The scope rules for variables which occur in funs are as
follows:
<P>
<UL>

<LI>
All variables which occur in the head of a fun are assumed
        to be &#34;fresh&#34; variables.
</LI>


<LI>
Variables which are defined before the fun, and which
        occur in function calls or guard tests within the fun, have
        the values they had outside the fun.
</LI>


<LI>
No variables may be exported from a fun.
</LI>


</UL>

<P>The following examples illustrate these rules:

<PRE>
print_list(File, List) -&#62;
    {ok, Stream} = file:open(File, write),
    foreach(fun(X) -&#62; io:format(Stream,&#34;~p~n&#34;,[X]) end, List),
    file:close(Stream).
    
</PRE>

<P>In the above example, the variable <CODE>X</CODE> which is defined in
the head of the fun is a new variable. The value of the variable
<CODE>Stream</CODE> which is used within within the fun gets its value
from the <CODE>file:open</CODE> line.
<P>Since any variable which occurs in the head of a fun is
considered a new variable it would be equally valid to write:
<PRE>
print_list(File, List) -&#62;
    {ok, Stream} = file:open(File, write),
    foreach(fun(File) -&#62; 
                io:format(Stream,&#34;~p~n&#34;,[File]) 
            end, List),
    file:close(Stream).
    
</PRE>

<P>In this example, <CODE>File</CODE> is used as the new variable
instead of <CODE>X</CODE>. This is rather silly since code in the body
of the fun cannot refer to the variable <CODE>File</CODE> which is
defined outside the fun. Compiling this example will yield
the diagnostic:
<PRE>
./FileName.erl:Line: Warning: variable 'File' 
      shadowed in 'lambda head'
    
</PRE>

<P>This reminds us that the variable <CODE>File</CODE> which is defined
inside the fun collides with the variable <CODE>File</CODE> which is
defined outside the fun.
<P>The rules for importing variables into a fun has the consequence
that certain pattern matching operations have to be moved into
guard expressions and cannot be written in the head of the fun.
For example, we might write the following code if we intend
the first clause of <CODE>F</CODE> to be evaluated when the value of
its argument is <CODE>Y</CODE>:
<PRE>
f(...) -&#62;
    Y = ...
    map(fun(X) when X == Y -&#62;
             ;
           (_) -&#62;
             ...
        end, ...)
    ...
    
</PRE>

<P>instead of
<PRE>
f(...) -&#62;
    Y = ...
    map(fun(Y) -&#62;
             ;
           (_) -&#62;
             ...
        end, ...)
    ...
    
</PRE>
<A NAME="2.5"><!-- Empty --></A>
<H3>2.5 Funs and the Module Lists</H3>

<P>The following examples show a dialogue with the Erlang shell.
All the higher order functions discussed are exported from
the module <CODE>lists</CODE>.<A NAME="2.5.1"><!-- Empty --></A>
<H4>2.5.1 map</H4>

<PRE>
map(F, [H|T]) -&#62; [F(H)|map(F, T)];
map(F, [])    -&#62; [].

</PRE>

<P><CODE>map</CODE> takes a function of one argument and a list of
        terms. It returns the list obtained by applying the function
        to every argument in the list.
<PRE>
&#62; <STRONG>Double = fun(X) -&#62; 2 * X end.</STRONG>
#Fun&#60;erl_eval.6.72228031&#62;
&#62; <STRONG>lists:map(Double, [1,2,3,4,5]).</STRONG>
[2,4,6,8,10]
      
</PRE>

<P>When a new fun is defined in the shell, the value of the Fun
        is printed as <CODE>Fun#&#60;erl_eval&#62;</CODE>.<A NAME="2.5.2"><!-- Empty --></A>
<H4>2.5.2 any</H4>

<PRE>
any(Pred, [H|T]) -&#62;
    case Pred(H) of
        true  -&#62;  true;
        false -&#62;  any(Pred, T)
    end;
any(Pred, []) -&#62;
    false.

</PRE>

<P><CODE>any</CODE> takes a predicate <CODE>P</CODE> of one argument and a
        list of terms. A predicate is a function which returns
        <CODE>true</CODE> or <CODE>false</CODE>. <CODE>any</CODE> is true if there is a
        term <CODE>X</CODE> in the list such that <CODE>P(X)</CODE> is <CODE>true</CODE>.

<P>We define a predicate <CODE>Big(X)</CODE> which is <CODE>true</CODE> if
        its argument is greater that 10.
<PRE>
&#62; <STRONG>Big = fun(X) -&#62; if X &#62; 10 -&#62; true; true -&#62; false end end.</STRONG>
#Fun&#60;erl_eval.6.72228031&#62;
&#62; <STRONG>lists:any(Big, [1,2,3,4]).</STRONG>
false
&#62; <STRONG>lists:any(Big, [1,2,3,12,5]).</STRONG>
true
      
</PRE>
<A NAME="2.5.3"><!-- Empty --></A>
<H4>2.5.3 all</H4>

<PRE>
all(Pred, [H|T]) -&#62;
    case Pred(H) of
        true  -&#62;  all(Pred, T);
        false -&#62;  false
    end;
all(Pred, []) -&#62;
    true.

</PRE>

<P><CODE>all</CODE> has the same arguments as <CODE>any</CODE>. It is true
        if the predicate applied to all elements in the list is true.

<PRE>
&#62; <STRONG>lists:all(Big, [1,2,3,4,12,6]).</STRONG>   
false
&#62; <STRONG>lists:all(Big, [12,13,14,15]).</STRONG>       
true
      
</PRE>
<A NAME="2.5.4"><!-- Empty --></A>
<H4>2.5.4 foreach</H4>

<PRE>
foreach(F, [H|T]) -&#62;
    F(H),
    foreach(F, T);
foreach(F, []) -&#62;
    ok.

</PRE>

<P><CODE>foreach</CODE> takes a function of one argument and a list of
        terms. The function is applied to each argument in the list.
        <CODE>foreach</CODE> returns <CODE>ok</CODE>. It is used for its
        side-effect only.
<PRE>
&#62; <STRONG>lists:foreach(fun(X) -&#62; io:format(&#34;~w~n&#34;,[X]) end, [1,2,3,4]).</STRONG> 
1
2
3
4
ok
      
</PRE>
<A NAME="2.5.5"><!-- Empty --></A>
<H4>2.5.5 foldl</H4>

<PRE>
foldl(F, Accu, [Hd|Tail]) -&#62;
    foldl(F, F(Hd, Accu), Tail);
foldl(F, Accu, []) -&#62; Accu.

</PRE>

<P><CODE>foldl</CODE> takes a function of two arguments, an
        accumulator and a list. The function is called with two
        arguments. The first argument is the successive elements in
        the list, the second argument is the accumulator. The function
        must return a new accumulator which is used the next time
        the function is called.
<P>If we have a list of lists <CODE>L = [&#34;I&#34;,&#34;like&#34;,&#34;Erlang&#34;]</CODE>,
        then we can sum the lengths of all the strings in <CODE>L</CODE> as
        follows:
<PRE>
&#62; <STRONG>L = [&#34;I&#34;,&#34;like&#34;,&#34;Erlang&#34;].</STRONG>
[&#34;I&#34;,&#34;like&#34;,&#34;Erlang&#34;]
10&#62; <STRONG>lists:foldl(fun(X, Sum) -&#62; length(X) + Sum end, 0, L).</STRONG>                    
11
      
</PRE>

<P><CODE>foldl</CODE> works like a <CODE>while</CODE> loop in an imperative
        language:
<PRE>
L =  [&#34;I&#34;,&#34;like&#34;,&#34;Erlang&#34;],
Sum = 0,
while( L != []){
    Sum += length(head(L)),
    L = tail(L)
end
      
</PRE>
<A NAME="2.5.6"><!-- Empty --></A>
<H4>2.5.6 mapfoldl</H4>

<PRE>
mapfoldl(F, Accu0, [Hd|Tail]) -&#62;
    {R,Accu1} = F(Hd, Accu0),
    {Rs,Accu2} = mapfoldl(F, Accu1, Tail),
    {[R|Rs], Accu2};
mapfoldl(F, Accu, []) -&#62; {[], Accu}.

</PRE>

<P><CODE>mapfoldl</CODE> simultaneously maps and folds over a list.
        The following example shows how to change all letters in
        <CODE>L</CODE> to upper case and count them.
<P>First upcase:

<PRE>
&#62; <STRONG>Upcase = fun(X) when $a =&#60; X, X =&#60; $z -&#62; X + $A - $a;</STRONG>
                 <STRONG>(X) -&#62; X</STRONG> 
              <STRONG>end.</STRONG>
#Fun&#60;erl_eval.6.72228031&#62;
&#62; <STRONG>Upcase_word =</STRONG> 
      <STRONG>fun(X) -&#62;</STRONG> 
        <STRONG>lists:map(Upcase, X)</STRONG> 
      <STRONG>end.</STRONG>
#Fun&#60;erl_eval.6.72228031&#62;
&#62; <STRONG>Upcase_word(&#34;Erlang&#34;).</STRONG>
&#34;ERLANG&#34;
&#62; <STRONG>lists:map(Upcase_word, L).</STRONG>
[&#34;I&#34;,&#34;LIKE&#34;,&#34;ERLANG&#34;]
      
</PRE>

<P>Now we can do the fold and the map at the same time:
<PRE>
&#62; <STRONG>lists:mapfoldl(fun(Word, Sum) -&#62;</STRONG>
                    <STRONG>{Upcase_word(Word), Sum + length(Word)}</STRONG>
                 <STRONG>end, 0, L).</STRONG>
{[&#34;I&#34;,&#34;LIKE&#34;,&#34;ERLANG&#34;],11}
      
</PRE>
<A NAME="2.5.7"><!-- Empty --></A>
<H4>2.5.7 filter</H4>

<PRE>
filter(F, [H|T]) -&#62;
    case F(H) of
        true  -&#62; [H|filter(F, T)];
        false -&#62; filter(F, T)
    end;
filter(F, []) -&#62; [].

</PRE>

<P><CODE>filter</CODE> takes a predicate of one argument and a list
        and returns all element in the list which satisfy
        the predicate.
<PRE>
&#62; <STRONG>lists:filter(Big, [500,12,2,45,6,7]).</STRONG>
[500,12,45]
      
</PRE>

<P>When we combine maps and filters we can write very succinct
        code. For example, suppose we want to define a set difference
        function. We want to define <CODE>diff(L1, L2)</CODE> to be
        the difference between the lists <CODE>L1</CODE> and <CODE>L2</CODE>.
        This is the list of all elements in L1 which are not contained
        in L2. This code can be written as follows:
<PRE>
diff(L1, L2) -&#62; 
    filter(fun(X) -&#62; not member(X, L2) end, L1).
      
</PRE>

<P>The AND intersection of the list <CODE>L1</CODE> and <CODE>L2</CODE> is
        also easily defined:
<PRE>
intersection(L1,L2) -&#62; filter(fun(X) -&#62; member(X,L1) end, L2).
      
</PRE>
<A NAME="2.5.8"><!-- Empty --></A>
<H4>2.5.8 takewhile</H4>

<PRE>
takewhile(Pred, [H|T]) -&#62;
    case Pred(H) of
        true  -&#62; [H|takewhile(Pred, T)];
        false -&#62; []
    end;
takewhile(Pred, []) -&#62;
    [].

</PRE>

<P><CODE>takewhile(P, L)</CODE> takes elements <CODE>X</CODE> from a list
        <CODE>L</CODE> as long as the predicate <CODE>P(X)</CODE> is true.
<PRE>
&#62; <STRONG>lists:takewhile(Big, [200,500,45,5,3,45,6]).</STRONG>  
[200,500,45]
      
</PRE>
<A NAME="2.5.9"><!-- Empty --></A>
<H4>2.5.9 dropwhile</H4>

<PRE>
dropwhile(Pred, [H|T]) -&#62;
    case Pred(H) of
        true  -&#62; dropwhile(Pred, T);
        false -&#62; [H|T]
    end;
dropwhile(Pred, []) -&#62;
    [].

</PRE>

<P><CODE>dropwhile</CODE> is the complement of <CODE>takewhile</CODE>.

<PRE>
&#62; <STRONG>lists:dropwhile(Big, [200,500,45,5,3,45,6]).</STRONG>
[5,3,45,6]
      
</PRE>
<A NAME="2.5.10"><!-- Empty --></A>
<H4>2.5.10 splitwith</H4>

<PRE>
splitwith(Pred, L) -&#62;
    splitwith(Pred, L, []).

splitwith(Pred, [H|T], L) -&#62;
    case Pred(H) of 
        true  -&#62; splitwith(Pred, T, [H|L]);
        false -&#62; {reverse(L), [H|T]}
    end;
splitwith(Pred, [], L) -&#62;
    {reverse(L), []}.

</PRE>

<P><CODE>splitwith(P, L)</CODE> splits the list <CODE>L</CODE> into the two
        sub-lists <CODE>{L1, L2}</CODE>, where <CODE>L = takewhile(P, L)</CODE>
        and <CODE>L2 = dropwhile(P, L)</CODE>.
<PRE>
&#62; <STRONG>lists:splitwith(Big, [200,500,45,5,3,45,6]).</STRONG>
{[200,500,45],[5,3,45,6]}
      
</PRE>
<A NAME="2.6"><!-- Empty --></A>
<H3>2.6 Funs Which Return Funs</H3>

<P>So far, this section has only described functions which take
funs as arguments. It is also possible to write more powerful
functions which themselves return funs. The following examples
illustrate these type of functions.<A NAME="2.6.1"><!-- Empty --></A>
<H4>2.6.1 Simple Higher Order Functions</H4>

<P><CODE>Adder(X)</CODE> is a function which, given <CODE>X</CODE>, returns
        a new function <CODE>G</CODE> such that <CODE>G(K)</CODE> returns
        <CODE>K + X</CODE>.
<PRE>
&#62; <STRONG>Adder = fun(X) -&#62; fun(Y) -&#62; X + Y end end.</STRONG>
#Fun&#60;erl_eval.6.72228031&#62;
&#62; <STRONG>Add6 = Adder(6).</STRONG>
#Fun&#60;erl_eval.6.72228031&#62;
&#62; <STRONG>Add6(10).</STRONG>
16
      
</PRE>
<A NAME="2.6.2"><!-- Empty --></A>
<H4>2.6.2 Infinite Lists</H4>

<P>The idea is to write something like:
<PRE>
-module(lazy).
-export([ints_from/1]).
ints_from(N) -&#62;
    fun() -&#62;
            [N|ints_from(N+1)]
    end.
      
</PRE>

<P>Then we can proceed as follows:
<PRE>
&#62; <STRONG>XX = lazy:ints_from(1).</STRONG>
#Fun&#60;lazy.0.29874839&#62;
&#62; <STRONG>XX().</STRONG>
[1|#Fun&#60;lazy.0.29874839&#62;]
&#62; <STRONG>hd(XX()).</STRONG>
1
&#62; <STRONG>Y = tl(XX()).</STRONG>
#Fun&#60;lazy.0.29874839&#62;
&#62; <STRONG>hd(Y()).</STRONG>
2
      
</PRE>

<P>etc. - this is an example of &#34;lazy embedding&#34;.<A NAME="2.6.3"><!-- Empty --></A>
<H4>2.6.3 Parsing</H4>

<P>The following examples show parsers of the following type:
<PRE>
Parser(Toks) -&#62; {ok, Tree, Toks1} | fail
      
</PRE>

<P><CODE>Toks</CODE> is the list of tokens to be parsed. A successful
        parse returns <CODE>{ok, Tree, Toks1}</CODE>, where <CODE>Tree</CODE> is a
        parse tree and <CODE>Toks1</CODE> is a tail of <CODE>Tree</CODE> which
        contains symbols encountered after the structure which was
        correctly parsed. Otherwise <CODE>fail</CODE> is returned.
<P>The example which follows illustrates a simple, functional
        parser which parses the grammar:
<PRE>
(a | b) &#38; (c | d)
      
</PRE>

<P>The following code defines a function <CODE>pconst(X)</CODE> in
        the module <CODE>funparse</CODE>, which returns a fun which parses a
        list of tokens.
<PRE>
pconst(X) -&#62;
    fun (T) -&#62;
       case T of
           [X|T1] -&#62; {ok, {const, X}, T1};
           _      -&#62; fail
       end
    end.

</PRE>

<P>This function can be used as follows:
<PRE>
&#62; <STRONG>P1 = funparse:pconst(a).</STRONG>
#Fun&#60;funparse.0.22674075&#62;
&#62; <STRONG>P1([a,b,c]).</STRONG>
{ok,{const,a},[b,c]}
&#62; <STRONG>P1([x,y,z]).</STRONG>     
fail
      
</PRE>

<P>Next, we define the two higher order functions <CODE>pand</CODE>
        and <CODE>por</CODE> which combine primitive parsers to produce more
        complex parsers. Firstly <CODE>pand</CODE>:
<PRE>
pand(P1, P2) -&#62;
    fun (T) -&#62;
        case P1(T) of
            {ok, R1, T1} -&#62;
                case P2(T1) of
                    {ok, R2, T2} -&#62;
                        {ok, {'and', R1, R2}};
                    fail -&#62;
                        fail
                end;
            fail -&#62;
                fail
        end
    end.

</PRE>

<P>Given a parser <CODE>P1</CODE> for grammar <CODE>G1</CODE>, and a parser
        <CODE>P2</CODE> for grammar <CODE>G2</CODE>, <CODE>pand(P1, P2)</CODE> returns a
        parser for the grammar which consists of sequences of tokens
        which satisfy <CODE>G1</CODE> followed by sequences of tokens which
        satisfy <CODE>G2</CODE>.
<P><CODE>por(P1, P2)</CODE> returns a parser for the language
        described by the grammar <CODE>G1</CODE> or <CODE>G2</CODE>.
<PRE>
por(P1, P2) -&#62;
    fun (T) -&#62;
        case P1(T) of
            {ok, R, T1} -&#62; 
                {ok, {'or',1,R}, T1};
            fail -&#62; 
                case P2(T) of
                    {ok, R1, T1} -&#62;
                        {ok, {'or',2,R1}, T1};
                    fail -&#62;
                        fail
                end
        end
    end.

</PRE>

<P>The original problem was to parse the grammar
        <CODE>(a | b) &#38; (c | d)</CODE>. The following code addresses this
        problem:
<PRE>
grammar() -&#62;
    pand(
         por(pconst(a), pconst(b)),
         por(pconst(c), pconst(d))).

</PRE>

<P>The following code adds a parser interface to the grammar:
<PRE>
parse(List) -&#62;
    (grammar())(List).

</PRE>

<P>We can test this parser as follows:
<PRE>
&#62; <STRONG>funparse:parse([a,c]).</STRONG>
{ok,{'and',{'or',1,{const,a}},{'or',1,{const,c}}}}
&#62; <STRONG>funparse:parse([a,d]).</STRONG> 
{ok,{'and',{'or',1,{const,a}},{'or',2,{const,d}}}}
&#62; <STRONG>funparse:parse([b,c]).</STRONG>   
{ok,{'and',{'or',2,{const,b}},{'or',1,{const,c}}}}
&#62; <STRONG>funparse:parse([b,d]).</STRONG> 
{ok,{'and',{'or',2,{const,b}},{'or',2,{const,d}}}}
&#62; <STRONG>funparse:parse([a,b]).</STRONG>   
fail
      
</PRE>
<CENTER>
<HR>
<SMALL>
Copyright &copy; 1991-2006
<A HREF="http://www.erlang.se">Ericsson AB</A><BR>
</SMALL>
</CENTER>
</BODY>
</HTML>