1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<!-- This document was generated using DocBuilder 3.3.3 -->
<HTML>
<HEAD>
<TITLE>List Comprehensions</TITLE>
<SCRIPT type="text/javascript" src="../../doc/erlresolvelinks.js">
</SCRIPT>
</HEAD>
<BODY BGCOLOR="#FFFFFF" TEXT="#000000" LINK="#0000FF" VLINK="#FF00FF"
ALINK="#FF0000">
<CENTER>
<A HREF="http://www.erlang.se"><IMG BORDER=0 ALT="[Ericsson AB]" SRC="min_head.gif"></A>
</CENTER>
<A NAME="3"><!-- Empty --></A>
<H2>3 List Comprehensions</H2>
<A NAME="3.1"><!-- Empty --></A>
<H3>3.1 Simple Examples</H3>
<P>We start with a simple example:
<PRE>
> <STRONG>[X || X <- [1,2,a,3,4,b,5,6], X > 3].</STRONG>
[a,4,b,5,6]
</PRE>
<P>This should be read as follows:
<BLOCKQUOTE>
<P>The list of X such that X is taken from the list
<CODE>[1,2,a,...]</CODE> and X is greater than 3.
</BLOCKQUOTE>
<P>The notation <CODE>X <- [1,2,a,...]</CODE> is a generator and
the expression <CODE>X > 3</CODE> is a filter.
<P>An additional filter can be added in order to restrict
the result to integers:
<PRE>
> <STRONG>[X || X <- [1,2,a,3,4,b,5,6], integer(X), X > 3].</STRONG>
[4,5,6]
</PRE>
<P>Generators can be combined. For example, the Cartesian product
of two lists can be written as follows:
<PRE>
> <STRONG>[{X, Y} || X <- [1,2,3], Y <- [a,b]].</STRONG>
[{1,a},{1,b},{2,a},{2,b},{3,a},{3,b}]
</PRE>
<A NAME="3.2"><!-- Empty --></A>
<H3>3.2 Quick Sort</H3>
<P>The well known quick sort routine can be written as follows:
<PRE>
sort([Pivot|T]) ->
sort([ X || X <- T, X < Pivot]) ++
[Pivot] ++
sort([ X || X <- T, X >= Pivot]);
sort([]) -> [].
</PRE>
<P>The expression <CODE>[X || X <- T, X < Pivot]</CODE> is the list of
all elements in <CODE>T</CODE>, which are less than <CODE>Pivot</CODE>.
<P><CODE>[X || X <- T, X >= Pivot]</CODE> is the list of all elements in
<CODE>T</CODE>, which are greater or equal to <CODE>Pivot</CODE>.
<P>To sort a list, we isolate the first element in the list and
split the list into two sub-lists. The first sub-list contains
all elements which are smaller than the first element in
the list, the second contains all elements which are greater
than or equal to the first element in the list. We then sort
the sub-lists and combine the results.<A NAME="3.3"><!-- Empty --></A>
<H3>3.3 Permutations</H3>
<P>The following example generates all permutations of
the elements in a list:
<PRE>
perms([]) -> [[]];
perms(L) -> [[H|T] || H <- L, T <- perms(L--[H])].
</PRE>
<P>We take take <CODE>H</CODE> from <CODE>L</CODE> in all possible ways.
The result is the set of all lists <CODE>[H|T]</CODE>, where <CODE>T</CODE>
is the set of all possible permutations of <CODE>L</CODE> with
<CODE>H</CODE> removed.
<PRE>
> <STRONG>perms([b,u,g]).</STRONG>
[[b,u,g],[b,g,u],[u,b,g],[u,g,b],[g,b,u],[g,u,b]]
</PRE>
<A NAME="3.4"><!-- Empty --></A>
<H3>3.4 Pythagorean Triplets</H3>
<P>Pythagorean triplets are sets of integers <CODE>{A,B,C}</CODE> such
that <CODE>A**2 + B**2 = C**2</CODE>.
<P>The function <CODE>pyth(N)</CODE> generates a list of all integers
<CODE>{A,B,C}</CODE> such that <CODE>A**2 + B**2 = C**2</CODE> and where
the sum of the sides is less than <CODE>N</CODE>.
<PRE>
pyth(N) ->
[ {A,B,C} ||
A <- lists:seq(1,N),
B <- lists:seq(1,N),
C <- lists:seq(1,N),
A+B+C =< N,
A*A+B*B == C*C
].
</PRE>
<PRE>
> <STRONG>pyth(3).</STRONG>
[].
> <STRONG>pyth(11).</STRONG>
[].
> <STRONG>pyth(12).</STRONG>
[{3,4,5},{4,3,5}]
> <STRONG>pyth(50).</STRONG>
[{3,4,5},{4,3,5},{5,12,13},{6,8,10},{8,6,10},{8,15,17},
{9,12,15},{12,5,13},{12,9,15},{12,16,20},{15,8,17},
{16,12,20}]
</PRE>
<P>The following code reduces the search space and is more
efficient:
<PRE>
pyth1(N) ->
[{A,B,C} ||
A <- lists:seq(1,N-2),
B <- lists:seq(A+1,N-1),
C <- lists:seq(B+1,N),
A+B+C =< N,
A*A+B*B == C*C ].
</PRE>
<A NAME="3.5"><!-- Empty --></A>
<H3>3.5 Simplifications with List Comprehensions</H3>
<P>As an example, list comprehensions can be used to simplify some
of the functions in <CODE>lists.erl</CODE>:
<PRE>
append(L) -> [X || L1 <- L, X <- L1].
map(Fun, L) -> [Fun(X) || X <- L].
filter(Pred, L) -> [X || X <- L, Pred(X)].
</PRE>
<A NAME="3.6"><!-- Empty --></A>
<H3>3.6 Variable Bindings in List Comprehensions</H3>
<P>The scope rules for variables which occur in list
comprehensions are as follows:
<P>
<UL>
<LI>
all variables which occur in a generator pattern are
assumed to be "fresh" variables
</LI>
<LI>
any variables which are defined before the list
comprehension and which are used in filters have the values
they had before the list comprehension
</LI>
<LI>
no variables may be exported from a list comprehension.
</LI>
</UL>
<P>As an example of these rules, suppose we want to write
the function <CODE>select</CODE>, which selects certain elements from
a list of tuples. We might write
<CODE>select(X, L) -> [Y || {X, Y} <- L].</CODE> with the intention
of extracting all tuples from <CODE>L</CODE> where the first item is
<CODE>X</CODE>.
<P>Compiling this yields the following diagnostic:
<PRE>
./FileName.erl:Line: Warning: variable 'X' shadowed in generate
</PRE>
<P>This diagnostic warns us that the variable <CODE>X</CODE> in
the pattern is not the same variable as the variable <CODE>X</CODE>
which occurs in the function head.
<P>Evaluating <CODE>select</CODE> yields the following result:
<PRE>
> <STRONG>select(b,[{a,1},{b,2},{c,3},{b,7}]).</STRONG>
[1,2,3,7]
</PRE>
<P>This result is not what we wanted. To achieve the desired
effect we must write <CODE>select</CODE> as follows:
<PRE>
select(X, L) -> [Y || {X1, Y} <- L, X == X1].
</PRE>
<P>The generator now contains unbound variables and the test has
been moved into the filter. This now works as expected:
<PRE>
> <STRONG>select(b,[{a,1},{b,2},{c,3},{b,7}]).</STRONG>
[2,7]
</PRE>
<P>One consequence of the rules for importing variables into a
list comprehensions is that certain pattern matching operations
have to be moved into the filters and cannot be written directly
in the generators. To illustrate this, do not write as follows:
<PRE>
f(...) ->
Y = ...
[ Expression || PatternInvolving Y <- Expr, ...]
...
</PRE>
<P>Instead, write as follows:
<PRE>
f(...) ->
Y = ...
[ Expression || PatternInvolving Y1 <- Expr, Y == Y1, ...]
...
</PRE>
<CENTER>
<HR>
<SMALL>
Copyright © 1991-2006
<A HREF="http://www.erlang.se">Ericsson AB</A><BR>
</SMALL>
</CENTER>
</BODY>
</HTML>
|