1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<!-- This document was generated using DocBuilder 3.3.3 -->
<HTML>
<HEAD>
<TITLE>ei</TITLE>
<SCRIPT type="text/javascript" src="../../../../doc/erlresolvelinks.js">
</SCRIPT>
<STYLE TYPE="text/css">
<!--
.REFBODY { margin-left: 13mm }
.REFTYPES { margin-left: 8mm }
-->
</STYLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF" TEXT="#000000" LINK="#0000FF" VLINK="#FF00FF"
ALINK="#FF0000">
<!-- refpage -->
<CENTER>
<A HREF="http://www.erlang.se">
<IMG BORDER=0 ALT="[Ericsson AB]" SRC="min_head.gif">
</A>
<H1>ei</H1>
</CENTER>
<H3>C LIBRARY</H3>
<DIV CLASS=REFBODY>
ei
</DIV>
<H3>C LIBRARY SUMMARY</H3>
<DIV CLASS=REFBODY>
routines for handling the erlang binary term format
</DIV>
<H3>DESCRIPTION</H3>
<DIV CLASS=REFBODY>
<P> The library <CODE>ei</CODE> contains macros and functions to encode
and decode the erlang binary term format.
<P> With <CODE>ei</CODE>, you can convert atoms, lists, numbers and
binaries to and from the binary format. This is useful when
writing port programs and drivers. <CODE>ei</CODE> uses a given
buffer, and no dynamic memory (with the exception of
<CODE>ei_decode_fun()</CODE>), and is often quite fast.
<P> It also handles C-nodes, C-programs that talks erlang
distribution with erlang nodes (or other C-nodes) using the
erlang distribution format. The difference between <CODE>ei</CODE> and
<CODE>erl_interface</CODE> is that <CODE>ei</CODE> uses the binary format
directly when sending and receiving terms. It is also thread
safe, and using threads, one process can handle multiple
C-nodes. The <CODE>erl_interface</CODE> library is built on top of
<CODE>ei</CODE>, but of legacy reasons, it doesn't allow for multiple
C-nodes. In general, <CODE>ei</CODE> is the preferred way of doing
C-nodes.
<P> The decode and encode functions use a buffer an index into the
buffer, which points at the point where to encode and
decode. The index is updated to point right after the term
encoded/decoded. No checking is done whether the term fits in
the buffer or not. If encoding goes outside the buffer, the
program may crash.
<P> All functions takes two parameter, <CODE>buf</CODE> is a pointer to
the buffer where the binary data is / will be, <CODE>index</CODE> is a
pointer to an index into the buffer. This parameter will be
incremented with the size of the term decoded / encoded. The
data is thus at <CODE>buf[*index]</CODE> when an <CODE>ei</CODE> function is
called.
<P> The encode functions all assumes that the <CODE>buf</CODE> and
<CODE>index</CODE> parameters points to a buffer big enough for the
data. To get the size of an encoded term, without encoding it,
pass <CODE>NULL</CODE> instead of a buffer pointer. The <CODE>index</CODE>
parameter will be incremented, but nothing will be encoded. This
is the way in <CODE>ei</CODE> to "preflight" term encoding.
<P> There are also encode-functions that uses a dynamic buffer. It
is often more convenient to use these to encode data. All encode
funcions comes in two versions: those starting with <CODE>ei_x</CODE>,
uses a dynamic buffer.
<P> All functions return <CODE>0</CODE> if successful, and <CODE>-1</CODE> if
not. (For instance, if a term is not of the expected type, or
the data to decode is not a valid erlang term.)
<P> Some of the decode-functions needs a preallocated buffer. This
buffer must be allocated big enough, and for non compound types
the <CODE>ei_get_type()</CODE>
function returns the size required (note that for strings an
extra byte is needed for the 0 string terminator).
</DIV>
<H3>EXPORTS</H3>
<P><A NAME="ei_set_compat_rel/1"><STRONG><CODE>void ei_set_compat_rel(release_number)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>unsigned release_number;</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<A NAME="ei_set_compat_rel"><!-- Empty --></A>
<P>By default, the <CODE>ei</CODE> library is only guaranteed
to be compatible with other Erlang/OTP components from the same
release as the <CODE>ei</CODE> library itself. For example, <CODE>ei</CODE> from
the OTP R10 release is not compatible with an Erlang emulator
from the OTP R9 release by default.
<P> A call to <CODE>ei_set_compat_rel(release_number)</CODE> sets the
<CODE>ei</CODE> library in compatibility mode of release
<CODE>release_number</CODE>. Valid range of <CODE>release_number</CODE>
is [7, current release]. This makes it possible to
communicate with Erlang/OTP components from earlier releases.
<P>
<TABLE CELLPADDING=4>
<TR>
<TD VALIGN=TOP><IMG ALT="Note!" SRC="note.gif"></TD>
<TD>
<P>If this function is called, it may only be called once
and must be called before any other functions in the <CODE>ei</CODE>
library is called.
</TD>
</TR>
</TABLE>
<P>
<TABLE CELLPADDING=4>
<TR>
<TD VALIGN=TOP><IMG ALT="Warning!" SRC="warning.gif"></TD>
<TD>
<P>You may run into trouble if this feature is used
carelessly. Always make sure that all communicating
components are either from the same Erlang/OTP release, or
from release X and release Y where all components
from release Y are in compatibility mode of release X.
</TD>
</TR>
</TABLE>
</DIV>
<P><A NAME="ei_encode_version/2"><STRONG><CODE>int ei_encode_version(char *buf, int *index)</CODE></STRONG></A><BR>
<A NAME="ei_x_encode_version/1"><STRONG><CODE>int ei_x_encode_version(ei_x_buff* x)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Encodes a version magic number for the binary format. Must
be the first token in a binary term.
</DIV>
<P><A NAME="ei_encode_long/3"><STRONG><CODE>int ei_encode_long(char *buf, int *index, long p)</CODE></STRONG></A><BR>
<A NAME="ei_x_encode_long/2"><STRONG><CODE>int ei_x_encode_long(ei_x_buff* x, long p)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Encodes a long integer in the binary format.
Note that if the code is 64 bits the function ei_encode_long() is
exactly the same as ei_encode_longlong().
</DIV>
<P><A NAME="ei_encode_ulong/3"><STRONG><CODE>int ei_encode_ulong(char *buf, int *index, unsigned long p)</CODE></STRONG></A><BR>
<A NAME="ei_x_encode_ulong/2"><STRONG><CODE>int ei_x_encode_ulong(ei_x_buff* x, unsigned long p)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Encodes an unsigned long integer in the binary format.
Note that if the code is 64 bits the function ei_encode_ulong() is
exactly the same as ei_encode_ulonglong().
</DIV>
<P><A NAME="ei_encode_longlong/3"><STRONG><CODE>int ei_encode_longlong(char *buf, int *index, long long p)</CODE></STRONG></A><BR>
<A NAME="ei_x_encode_longlong/2"><STRONG><CODE>int ei_x_encode_longlong(ei_x_buff* x, long long p)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Encodes a GCC <CODE>long long</CODE> or Visual C++ <CODE>__int64</CODE> (64 bit)
integer in the binary format. Note that this function is missing
in the VxWorks port.
</DIV>
<P><A NAME="ei_encode_ulonglong/3"><STRONG><CODE>int ei_encode_ulonglong(char *buf, int *index, unsigned long long p)</CODE></STRONG></A><BR>
<A NAME="ei_x_encode_ulonglong/2"><STRONG><CODE>int ei_x_encode_ulonglong(ei_x_buff* x, unsigned long long p)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Encodes a GCC <CODE>unsigned long long</CODE> or Visual C++ <CODE>unsigned
__int64</CODE> (64 bit) integer in the binary format. Note that
this function is missing in the VxWorks port.
</DIV>
<P><A NAME="ei_encode_bignum/3"><STRONG><CODE>int ei_encode_bignum(char *buf, int *index, mpz_t obj)</CODE></STRONG></A><BR>
<A NAME="ei_x_encode_bignum/2"><STRONG><CODE>int ei_x_encode_bignum(ei_x_buff *x, mpz_t obj)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Encodes a GMP <CODE>mpz_t</CODE> integer to binary format.
To use this function the ei library needs to be configured and compiled
to use the GMP library.
</DIV>
<P><A NAME="ei_encode_double/3"><STRONG><CODE>int ei_encode_double(char *buf, int *index, double p)</CODE></STRONG></A><BR>
<A NAME="ei_x_encode_double/2"><STRONG><CODE>int ei_x_encode_double(ei_x_buff* x, double p)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Encodes a double-precision (64 bit) floating point number in
the binary format.
</DIV>
<P><A NAME="ei_encode_boolean/3"><STRONG><CODE>int ei_encode_boolean(char *buf, int *index, int p)</CODE></STRONG></A><BR>
<A NAME="ei_x_encode_boolean/2"><STRONG><CODE>int ei_x_encode_boolean(ei_x_buff* x, int p)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Encodes a boolean value, as the atom <CODE>true</CODE> if p is not
zero or <CODE>false</CODE> if p is zero.
</DIV>
<P><A NAME="ei_encode_char/3"><STRONG><CODE>int ei_encode_char(char *buf, int *index, char p)</CODE></STRONG></A><BR>
<A NAME="ei_x_encode_char/2"><STRONG><CODE>int ei_x_encode_char(ei_x_buff* x, char p)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Encodes a char (8-bit) as an integer between 0-255 in the binary format.
Note that for historical reasons the integer argument is of
type <CODE>char</CODE>. Your C code should consider the
given argument to be of type <CODE>unsigned char</CODE> even if
the C compilers and system may define <CODE>char</CODE> to be
signed.
</DIV>
<P><A NAME="ei_encode_string/3"><STRONG><CODE>int ei_encode_string(char *buf, int *index, const char *p)</CODE></STRONG></A><BR>
<A NAME="ei_encode_string_len/4"><STRONG><CODE>int ei_encode_string_len(char *buf, int *index, const char *p, int len)</CODE></STRONG></A><BR>
<A NAME="ei_x_encode_string/2"><STRONG><CODE>int ei_x_encode_string(ei_x_buff* x, const char *p)</CODE></STRONG></A><BR>
<A NAME="ei_x_encode_string_len/3"><STRONG><CODE>int ei_x_encode_string_len(ei_x_buff* x, const char* s, int len)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Encodes a string in the binary format. (A string in erlang
is a list, but is encoded as a character array in the binary
format.) The string should be zero-terminated, except for
the <CODE>ei_x_encode_string_len()</CODE> function.
</DIV>
<P><A NAME="ei_encode_atom/3"><STRONG><CODE>int ei_encode_atom(char *buf, int *index, const char *p)</CODE></STRONG></A><BR>
<A NAME="ei_encode_atom_len/4"><STRONG><CODE>int ei_encode_atom_len(char *buf, int *index, const char *p, int len)</CODE></STRONG></A><BR>
<A NAME="ei_x_encode_atom/2"><STRONG><CODE>int ei_x_encode_atom(ei_x_buff* x, const char *p)</CODE></STRONG></A><BR>
<A NAME="ei_x_encode_atom_len/3"><STRONG><CODE>int ei_x_encode_atom_len(ei_x_buff* x, const char *p, int len)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Encodes an atom in the binary format. The <CODE>p</CODE> parameter
is the name of the atom. Only upto <CODE>MAXATOMLEN</CODE> bytes
are encoded. The name should be zero-terminated, except for
the <CODE>ei_x_encode_atom_len()</CODE> function.
</DIV>
<P><A NAME="ei_encode_binary/4"><STRONG><CODE>int ei_encode_binary(char *buf, int *index, const void *p, long len)</CODE></STRONG></A><BR>
<A NAME="ei_x_encode_binary/3"><STRONG><CODE>int ei_x_encode_binary(ei_x_buff* x, const void *p, long len)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Encodes a binary in the binary format. The data is at
<CODE>p</CODE>, of <CODE>len</CODE> bytes length.
</DIV>
<P><A NAME="ei_encode_pid/3"><STRONG><CODE>int ei_encode_pid(char *buf, int *index,
const erlang_pid *p)</CODE></STRONG></A><BR>
<A NAME="ei_x_encode_pid/2"><STRONG><CODE>int ei_x_encode_pid(ei_x_buff* x,
const erlang_pid *p)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Encodes an erlang process identifier, pid, in the binary
format. The <CODE>p</CODE> parameter points to an
<CODE>erlang_pid</CODE> structure (which should have been obtained
earlier with <CODE>ei_decode_pid()</CODE>).
</DIV>
<P><A NAME="ei_encode_fun/3"><STRONG><CODE>int ei_encode_fun(char *buf, int *index, const erlang_fun *p)</CODE></STRONG></A><BR>
<A NAME="ei_x_encode_fun/2"><STRONG><CODE>int ei_x_encode_fun(ei_x_buff* x, const erlang_fun* fun)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Encodes a fun in the binary format. The <CODE>p</CODE> parameter
points to an <CODE>erlang_fun</CODE> structure. The
<CODE>erlang_fun</CODE> is not freed automatically, the
<CODE>free_fun</CODE> should be called if the fun is not needed
after encoding.
</DIV>
<P><A NAME="ei_encode_port/3"><STRONG><CODE>int ei_encode_port(char *buf, int *index, const
erlang_port *p)</CODE></STRONG></A><BR>
<A NAME="ei_x_encode_port/2"><STRONG><CODE>int ei_x_encode_port(ei_x_buff* x, const erlang_port *p)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Encodes an erlang port in the binary format. The <CODE>p</CODE>
parameter points to a <CODE>erlang_port</CODE> structure (which
should have been obtained earlier with
<CODE>ei_decode_port()</CODE>.
</DIV>
<P><A NAME="ei_encode_ref/3"><STRONG><CODE>int ei_encode_ref(char *buf, int *index, const erlang_ref *p)</CODE></STRONG></A><BR>
<A NAME="ei_x_encode_ref/2"><STRONG><CODE>int ei_x_encode_ref(ei_x_buff* x, const erlang_ref *p)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Encodes an erlang reference in the binary format. The
<CODE>p</CODE> parameter points to a <CODE>erlang_ref</CODE> structure
(which should have been obtained earlier with
<CODE>ei_decode_ref()</CODE>.
</DIV>
<P><A NAME="ei_encode_term/3"><STRONG><CODE>int ei_encode_term(char *buf, int *index, void *t)</CODE></STRONG></A><BR>
<A NAME="ei_x_encode_term/2"><STRONG><CODE>int ei_x_encode_term(ei_x_buff* x, void *t)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> This function encodes an <CODE>ETERM</CODE>, as obtained from
<CODE>erl_interface</CODE>. The <CODE>t</CODE> parameter is actually an
<CODE>ETERM</CODE> pointer. This function doesn't free the
<CODE>ETERM</CODE>.
</DIV>
<P><A NAME="ei_encode_trace/3"><STRONG><CODE>int ei_encode_trace(char *buf, int *index, const erlang_trace *p)</CODE></STRONG></A><BR>
<A NAME="ei_x_encode_trace/2"><STRONG><CODE>int ei_x_encode_trace(ei_x_buff* x, const erlang_trace *p)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> This function encodes an erlang trace token in the binary
format. The <CODE>p</CODE> parameter points to a
<CODE>erlang_trace</CODE> structure (which should have been
obtained earlier with <CODE>ei_decode_trace()</CODE>.
</DIV>
<P><A NAME="ei_encode_tuple_header/3"><STRONG><CODE>int ei_encode_tuple_header(char *buf, int *index, int arity)</CODE></STRONG></A><BR>
<A NAME="ei_x_encode_tuple_header/2"><STRONG><CODE>int ei_x_encode_tuple_header(ei_x_buff* x, int arity)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> This function encodes a tuple header, with a specified
arity. The next <CODE>arity</CODE> terms encoded will be the
elements of the tuple. Tuples and lists are encoded
recursively, so that a tuple may contain another tuple or
list.
<P> E.g. to encode the tuple <CODE>{a, {b, {}}}</CODE>:
<PRE>
ei_encode_tuple_header(buf, &i, 2);
ei_encode_atom(buf, &i, "a");
ei_encode_tuple_header(buf, &i, 2);
ei_encode_atom(buf, &i, "b");
ei_encode_tuple_header(buf, &i, 0);
</PRE>
</DIV>
<P><A NAME="ei_encode_list_header/3"><STRONG><CODE>int ei_encode_list_header(char *buf, int *index, int arity)</CODE></STRONG></A><BR>
<A NAME="ei_x_encode_list_header/2"><STRONG><CODE>int ei_x_encode_list_header(ei_x_buff* x, int arity)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> This function encodes a list header, with a specified
arity. The next <CODE>arity+1</CODE> terms are the elements
(actually it's <CODE>arity</CODE> cons cells) and the tail of the
list. Lists and tuples are encoded recursively, so that a
list may contain another list or tuple.
<P> E.g. to encode the list <CODE>[c, d, [e | f]]</CODE>:
<PRE>
ei_encode_list_header(buf, &i, 3);
ei_encode_atom(buf, &i, "c");
ei_encode_atom(buf, &i, "d");
ei_encode_list_header(buf, &i, 1);
ei_encode_atom(buf, &i, "e");
ei_encode_atom(buf, &i, "f");
ei_encode_empty_list(buf, &i);
</PRE>
<P>
<TABLE CELLPADDING=4>
<TR>
<TD VALIGN=TOP><IMG ALT="Note!" SRC="note.gif"></TD>
<TD>
<P> It may seem that there is no way to create a list without
knowing the number of elements in advance. But indeed
there is a way. Note that the list <CODE>[a, b, c]</CODE> can be
written as <CODE>[a | [b | [c]]]</CODE>. Using this, a list can
be written as conses.
</TD>
</TR>
</TABLE>
<P> To encode a list, without knowing the arity in advance:
<PRE>
while (something()) {
ei_x_encode_list_header(&x, 1);
ei_x_encode_ulong(&x, i); /* just an example */
}
ei_x_encode_empty_list(&x);
</PRE>
</DIV>
<P><A NAME="ei_encode_empty_list/2"><STRONG><CODE>int ei_encode_empty_list(char* buf, int* index)</CODE></STRONG></A><BR>
<A NAME="ei_x_encode_empty_list/1"><STRONG><CODE>int ei_x_encode_empty_list(ei_x_buff* x)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> This function encodes an empty list. It's often used at the
tail of a list.
</DIV>
<P><A NAME="ei_get_type/4"><STRONG><CODE>intei_get_type(const char *buf, const int *index, int *type, int *size)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> This function returns the type in <CODE>type</CODE> and size in
<CODE>size</CODE> of the encoded term.
For strings and atoms, size
is the number of characters <STRONG>not</STRONG> including the
terminating 0. For binaries, <CODE>size</CODE> is the number of
bytes. For lists and tuples, <CODE>size</CODE> is the arity of the
object. For other types, <CODE>size</CODE> is 0. In all cases,
<CODE>index</CODE> is left unchanged.
</DIV>
<P><A NAME="ei_decode_version/3"><STRONG><CODE>int ei_decode_version(const char *buf, int *index, int *version)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> This function decodes the version magic number for the
erlang binary term format. It must be the first token in a
binary term.
</DIV>
<P><A NAME="ei_decode_long/3"><STRONG><CODE>int ei_decode_long(const char *buf, int *index, long *p)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> This function decodes a long integer from the binary format.
Note that if the code is 64 bits the function ei_decode_long() is
exactly the same as ei_decode_longlong().
</DIV>
<P><A NAME="ei_decode_ulong/3"><STRONG><CODE>int ei_decode_ulong(const char *buf, int *index, unsigned long *p)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> This function decodes an unsigned long integer from
the binary format.
Note that if the code is 64 bits the function ei_decode_ulong() is
exactly the same as ei_decode_ulonglong().
</DIV>
<P><A NAME="ei_decode_longlong/3"><STRONG><CODE>int ei_decode_longlong(const char *buf, int *index, long long *p)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> This function decodes a GCC <CODE>long long</CODE> or Visual C++ <CODE>__int64</CODE>
(64 bit) integer from the binary format. Note that this
function is missing in the VxWorks port.
</DIV>
<P><A NAME="ei_decode_ulonglong/3"><STRONG><CODE>int ei_decode_ulonglong(const char *buf, int *index, unsigned long long *p)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> This function decodes a GCC <CODE>unsigned long long</CODE> or Visual C++
<CODE>unsigned __int64</CODE> (64 bit) integer from the binary format.
Note that this function is missing in the VxWorks port.
</DIV>
<P><A NAME="ei_decode_bignum/3"><STRONG><CODE>int ei_decode_bignum(const char *buf, int *index, mpz_t obj)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> This function decodes an integer in the binary format to a GMP <CODE>mpz_t</CODE> integer.
To use this function the ei library needs to be configured and compiled
to use the GMP library.
</DIV>
<P><A NAME="ei_decode_double/3"><STRONG><CODE>int ei_decode_double(const char *buf, int *index, double *p)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> This function decodes an double-precision (64 bit) floating
point number from the binary format.
</DIV>
<P><A NAME="ei_decode_boolean/3"><STRONG><CODE>int ei_decode_boolean(const char *buf, int *index, int *p)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> This function decodes a boolean value from the binary
format. A boolean is actually an atom, <CODE>true</CODE> decodes 1
and <CODE>false</CODE> decodes 0.
</DIV>
<P><A NAME="ei_decode_char/3"><STRONG><CODE>int ei_decode_char(const char *buf, int *index, char *p)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> This function decodes a char (8-bit) integer between 0-255
from the binary format.
Note that for historical reasons the returned integer is of
type <CODE>char</CODE>. Your C code should consider the
returned value to be of type <CODE>unsigned char</CODE> even if
the C compilers and system may define <CODE>char</CODE> to be
signed.
</DIV>
<P><A NAME="ei_decode_string/3"><STRONG><CODE>int ei_decode_string(const char *buf, int *index, char *p)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> This function decodes a string from the binary format. A
string in erlang is a list of integers between 0 and
255. Note that since the string is just a list, sometimes
lists are encoded as strings by <CODE>term_to_binary/1</CODE>,
even if it was not intended.
<P> The string is copied to <CODE>p</CODE>, and enough space must be
allocated. The returned string is null terminated so you
need to add an extra byte to the memory requirement.
</DIV>
<P><A NAME="ei_decode_atom/3"><STRONG><CODE>int ei_decode_atom(const char *buf, int *index, char *p)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> This function decodes an atom from the binary format. The
name of the atom is placed at <CODE>p</CODE>. There can be at most
<CODE>MAXATOMLEN</CODE> bytes placed in the buffer.
</DIV>
<P><A NAME="ei_decode_binary/4"><STRONG><CODE>int ei_decode_binary(const char *buf, int *index, void *p, long *len)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> This function decodes a binary from the binary format. The
<CODE>len</CODE> parameter is set to the actual size of the
binary. Note that <CODE>ei_decode_binary()</CODE> assumes that there
are enough room for the binary. The size required can be
fetched by <CODE>ei_get_type()</CODE>.
</DIV>
<P><A NAME="ei_decode_fun/3"><STRONG><CODE>int ei_decode_fun(const char *buf, int *index, erlang_fun *p)</CODE></STRONG></A><BR>
<A NAME="free_fun/1"><STRONG><CODE>void free_fun(erlang_fun* f)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> This function decodes a fun from the binary format. The
<CODE>p</CODE> parameter should be NULL or point to an
<CODE>erlang_fun</CODE> structure. This is the only decode
function that allocates memory; when the <CODE>erlang_fun</CODE>
is no longer needed, it should be freed with
<CODE>free_fun</CODE>. (This has to do with the arbitrary size of
the environment for a fun.)
</DIV>
<P><A NAME="ei_decode_pid/3"><STRONG><CODE>int ei_decode_pid(const char *buf, int *index, erlang_pid *p)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Decodes a pid, process identifier, from the binary format.
</DIV>
<P><A NAME="ei_decode_port/3"><STRONG><CODE>int ei_decode_port(const char *buf, int *index, erlang_port *p)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> This function decodes a port identifier from the binary
format.
</DIV>
<P><A NAME="ei_decode_ref/3"><STRONG><CODE>int ei_decode_ref(const char *buf, int *index, erlang_ref *p)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> This function decodes a reference from the binary format.
</DIV>
<P><A NAME="ei_decode_trace/3"><STRONG><CODE>int ei_decode_trace(const char *buf, int *index, erlang_trace *p)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Decodes an erlang trace token from the binary format.
</DIV>
<P><A NAME="ei_decode_tuple_header/3"><STRONG><CODE>int ei_decode_tuple_header(const char *buf, int *index, int *arity)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> This function decodes a tuple header, the number of elements
is returned in <CODE>arity</CODE>. The tuple elements follows in order in
the buffer.
</DIV>
<P><A NAME="ei_decode_list_header/3"><STRONG><CODE>int ei_decode_list_header(const char *buf, int *index, int *arity)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> This function decodes a list header from the binary
format. The number of elements is returned in
<CODE>arity</CODE>. The <CODE>arity+1</CODE> elements follows (the last
one is the tail of the list, normally an empty list.) If
<CODE>arity</CODE> is <CODE>0</CODE>, it's an empty list.
<P> Note that lists are encoded as strings, if they consist
entirely of integers in the range 0..255. This function will
not decode such strings, use <CODE>ei_decode_string()</CODE>
instead.
</DIV>
<P><A NAME="ei_decode_ei_term/3"><STRONG><CODE>int ei_decode_ei_term(const char* buf, int* index,
ei_term* term)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> This function decodes any term, or at least tries to. If the
term pointed at by <CODE>*index</CODE> in <CODE>buf</CODE> fits in the
<CODE>term</CODE> union, it is decoded, and the appropriate field
in <CODE>term->value</CODE> is set, and <CODE>*index</CODE> is
incremented by the term size.
<P> The function returns 0 on successful encoding, -1 on error,
and 1 if the term seems alright, but does not fit in the
<CODE>term</CODE> structure. If it returns 0, the <CODE>index</CODE>
will be incremented, and the <CODE>term</CODE> contains the
decoded term.
<P> The <CODE>term</CODE> structure will contain the arity for a tuple
or list, size for a binary, string or atom. It will contains
a term if it's any of the following: integer, float, atom,
pid, port or ref.
</DIV>
<P><A NAME="ei_decode_term/3"><STRONG><CODE>int ei_decode_term(const char *buf, int *index, void *t)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> This function decodes a term from the binary format. The
term is return in <CODE>t</CODE> as a <CODE>ETERM*</CODE>, so <CODE>t</CODE>
is actually an <CODE>ETERM**</CODE> (see
<CODE>erl_interface(3)</CODE>. The term should later be
deallocated.
<P> Note that this function is located in the erl_interface
library.
</DIV>
<P><A NAME="ei_print_term/3"><STRONG><CODE>int ei_print_term(FILE* fp, const char* buf, int* index)</CODE></STRONG></A><BR>
<A NAME="ei_s_print_term/3"><STRONG><CODE>int ei_s_print_term(char** s, const char* buf, int* index)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> This function prints a term, in clear text, to the file
given by <CODE>fp</CODE>, or the buffer pointed to by <CODE>s</CODE>. It
tries to resemble the term printing in the erlang shell.
<P> In <CODE>ei_s_print_term()</CODE>, the parameter <CODE>s</CODE> should
point to a dynamically (malloc) allocated string of
<CODE>BUFSIZ</CODE> bytes or a NULL pointer. The string may be
reallocated (and <CODE>*s</CODE> may be updated) by this function
if the result is more than <CODE>BUFSIZ</CODE> characters. The
string returned is zero-terminated.
<P> The return value is the number of characters written to the
file or string, or -1 if <CODE>buf[index]</CODE> doesn't contain a
valid term. Unfortunately, I/O errors on <CODE>fp</CODE> is not
checked.
<P> The argument <CODE>index</CODE> is updated, i.e. this function can
be viewed as en decode function that decodes a term into a
human readable format.
</DIV>
<P><A NAME="ei_x_format/3"><STRONG><CODE>int ei_x_format(ei_x_buff* x, const char* fmt, ...)</CODE></STRONG></A><BR>
<A NAME="ei_x_format_wo_ver/3"><STRONG><CODE>int ei_x_format_wo_ver(ei_x_buff* x, const char *fmt, ... )</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> Format a term, given as a string, to a buffer. This
functions works like a sprintf for erlang terms. The
<CODE>fmt</CODE> contains a format string, with arguments like
<CODE>~d</CODE>, to insert terms from variables. The following
formats are supported (with the C types given):
<P>
<PRE>
~a - an atom, char*
~s - a string, char*
~i - an integer, int
~l - a long integer, long int
~u - a unsigned long integer, unsigned long int
~f - a float, float
~d - a double float, double float
</PRE>
<P> For instance, to encode a tuple with some stuff:
<PRE>
ei_x_format("{~a,~i,~d}", "numbers", 12, 3.14159)
encodes the tuple {numbers,12,3.14159}
</PRE>
<P> The <CODE>ei_x_format_wo_ver()</CODE> formats into a buffer, without
the initial version byte.
</DIV>
<P><A NAME="ei_x_new/1"><STRONG><CODE>int ei_x_new(ei_x_buff* x)</CODE></STRONG></A><BR>
<A NAME="ei_x_new_with_version/1"><STRONG><CODE>int ei_x_new_with_version(ei_x_buff* x)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> This function allocates a new <CODE>ei_x_buff</CODE> buffer. The
fields of the structure pointed to by <CODE>x</CODE> parameter is
filled in, and a default buffer is allocated. The
<CODE>ei_x_new_with_version()</CODE> also puts an initial version
byte, that is used in the binary format. (So that
<CODE>ei_x_encode_version()</CODE> won't be needed.)
</DIV>
<P><A NAME="ei_x_free/1"><STRONG><CODE>int ei_x_free(ei_x_buff* x)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> This function frees an <CODE>ei_x_buff</CODE> buffer. The memory
used by the buffer is returned to the OS.
</DIV>
<P><A NAME="ei_x_append/2"><STRONG><CODE>int ei_x_append(ei_x_buff* x, const ei_x_buff* x2)</CODE></STRONG></A><BR>
<A NAME="ei_x_append_buf/3"><STRONG><CODE>int ei_x_append_buf(ei_x_buff* x, const char* buf, int len)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> These functions appends data at the end of the buffer <CODE>x</CODE>.
</DIV>
<P><A NAME="ei_skip_term/2"><STRONG><CODE>int ei_skip_term(const char* buf, int* index)</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P> This function skips a term in the given buffer, it
recursively skips elements of lists and tuples, so that a
full term is skipped. This is a way to get the size of an
erlang term.
<P> <CODE>buf</CODE> is the buffer.
<P> <CODE>index</CODE> is updated to point right after the term in the
buffer.
<P>
<TABLE CELLPADDING=4>
<TR>
<TD VALIGN=TOP><IMG ALT="Note!" SRC="note.gif"></TD>
<TD>
<P> This can be useful when you want to hold arbitrary
terms: just skip them and copy the binary term data to some
buffer.
</TD>
</TR>
</TABLE>
<P> The function returns <CODE>0</CODE> on success and <CODE>-1</CODE> on
failure.
</DIV>
<H3>Debug Information</H3>
<DIV CLASS=REFBODY>
<P> Some tips on what to check when the emulator doesn't seem to
receive the terms that you send.
<P>
<UL>
<LI>
be careful with the version header, use
<CODE>ei_x_new_with_version()</CODE> when appropriate
</LI>
<LI>
turn on distribution tracing on the erlang node
</LI>
<LI>
check the result codes from ei_decode_-calls
</LI>
</UL>
</DIV>
<H3>See Also</H3>
<DIV CLASS=REFBODY>
<P>erl_interface(3)
</DIV>
<H3>AUTHORS</H3>
<DIV CLASS=REFBODY>
Kenneth Lundin - support@erlang.ericsson.se<BR>
Jakob Cederlund - support@erlang.ericsson.se<BR>
</DIV>
<CENTER>
<HR>
<SMALL>erl_interface 3.5.5.2<BR>
Copyright © 1991-2006
<A HREF="http://www.erlang.se">Ericsson AB</A><BR>
</SMALL>
</CENTER>
</BODY>
</HTML>
|