File: ch_ic_protocol.html

package info (click to toggle)
erlang-doc-html 1%3A11.b.2-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 23,284 kB
  • ctags: 10,724
  • sloc: erlang: 505; ansic: 323; makefile: 62; perl: 61; sh: 45
file content (265 lines) | stat: -rw-r--r-- 8,388 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<!-- This document was generated using DocBuilder 3.3.3 -->
<HTML>
<HEAD>
  <TITLE>IC Protocol</TITLE>
  <SCRIPT type="text/javascript" src="../../../../doc/erlresolvelinks.js">
</SCRIPT>
</HEAD>
<BODY BGCOLOR="#FFFFFF" TEXT="#000000" LINK="#0000FF" VLINK="#FF00FF"
      ALINK="#FF0000">
<CENTER>
<A HREF="http://www.erlang.se"><IMG BORDER=0 ALT="[Ericsson AB]" SRC="min_head.gif"></A>
</CENTER>
<A NAME="3"><!-- Empty --></A>
<H2>3 IC Protocol</H2>

<P>The purpose of this chapter is to explain the bits and bytes of the
IC protocol, which is a composition of the Erlang distribution protocol
and the Erlang/OTP gen_server protocol. If you do not intend to replace
the Erlang distribution protocol, or replace the gen_server protocol, 
skip over this chapter. 

<A NAME="3.1"><!-- Empty --></A>
<H3>3.1 Introduction</H3>

<P>The IDL Compiler (IC) transforms Interface Definition Language
(IDL) specifications files to interface code for Erlang, C, and
Java. The Erlang language mapping is described in the Orber
documentation, while the other mappings are described in the IC
documentation (they are of course in accordance with the CORBA C
and Java language mapping specifications, with some restrictions).


<P>The most important parts of an IDL specification are the operation
declarations. An operation defines what information a client
provides to a server, and what information (if any) the client
gets back from the server. We consider IDL operations and language
mappings in section 2.


<P>What we here call the IC protocol, is the description of messages
exchanged between IC end-points (client and servers). It is valid
for all IC back-ends, except the 'erl_plain' and 'erl_corba'
back-ends. 

The IC protocol is in turn embedded into the Erlang gen_server
protocol, which is described below.

Finally, the gen_server protocol is embedded in the Erlang
distribution protocol. Pertinent parts of that protocol is
described further below.

<A NAME="3.2"><!-- Empty --></A>
<H3>3.2 Language mappings and IDL operations</H3>
<A NAME="3.2.1"><!-- Empty --></A>
<H4>3.2.1 IDL Operations</H4>

<P>An IDL operation is declared as follows:

<PRE>
        [oneway] RetType Op(in IType1 I1, in IType2 I2, ..., in ITypeN IN,
        out OType1 O1, out OType2 O2, ..., out OTypeM OM)
        N, M = 0, 1, 2, ...             (2.1.1)
      
</PRE>

<P>`Op' is the operation name, RetType is the return type, and ITypei, 
        i = 1, 2, ..., N, and OTypej, j = 1, 2, ..., M, are the `in' types
        and `out' types, respectively. The values I1, I2, ..., IN are 
        provided by the caller, and the value of RetType, and the values
        O1, O2, ..., OM, are provided as results to the caller. 


<P>The types can be any basic types or derived types declared in the
        IDL specification of which the operation declaration is a part.


<P>If the RetType has the special name `void' there is no return
        value (but there might still be result values O1, 02, ..., OM).


<P>The `in' and `out' parameters can be declared in any order, but
        for clarity we have listed all `in' parameters before the `out'
        parameters in the declaration above.


<P>If the keyword `oneway' is present, the operation is a cast, i.e.
        there is no confirmation of the operation, and consequently there
        must be no result values: RetType must be equal to `void', and M =
        0 must hold.


<P>Otherwise the operation is a call, i.e. it is confirmed (or else
        an exception is raised). 


<P>Note carefully that an operation declared without `oneway' is
        always a call, even if RetType is `void' and M = 0.

<A NAME="3.2.2"><!-- Empty --></A>
<H4>3.2.2 Language Mappings</H4>

<P>There are several CORBA Language Mapping specifications. These are
        about mapping interfaces to various programming languages. IC
        supports the CORBA C and Java mapping specifications, and the
        Erlang language mapping specified in the Orber documentation. 


<P>Excerpt from &#34;6.4 Basic OMG IDL Types&#34; in the Orber User's Guide:


<P>
<UL>

<LI>
         Functions with return type void will return the atom ok.
        <BR>

</LI>


</UL>

<P>Excerpt from &#34;6.13 Invocations of Operations&#34; in the Orber User's 
        Guide:


<P>
<UL>

<LI>
         A function call will invoke an operation. The first parameter
         of the function should be the object reference and then all in
         and inout parameters follow in the same order as specified in
         the IDL specification. The result will be a return value
         unless the function has inout or out parameters specified; in
         which case, a tuple of the return value, followed by the
         parameters will be returned.
        <BR>

</LI>


</UL>

<P>Hence the function that is mapped from an IDL operation to Erlang
        always have a return value (an Erlang function always has). That
        fact has influenced the IC protocol, in that there is always a
        return value (which is 'ok' if the return type was declared 'void'). 
<A NAME="3.3"><!-- Empty --></A>
<H3>3.3 IC Protocol</H3>

<P>Given the operation declaration (2.1.1) the IC protocol maps to
messages as follows, defined in terms of Erlang terms.

<A NAME="3.3.1"><!-- Empty --></A>
<H4>3.3.1 Call (Request/Reply, i.e. not oneway)</H4>

<PRE>
    request:             Op                     atom()          N = 0   
                         {Op, I1, I2, ..., IN}  tuple()         N &#62; 0
                                                                (3.1.1)

    reply:               Ret                                    M = 0
                         {Ret, O1, O2, ..., OM}                 M &#62; 0
                                                                (3.1.2)
</PRE>

<P><STRONG>Notice:</STRONG> Even if the RetType of the operation Op is 
        declared to be 'void', a return value 'ok' is returned in 
        the reply message. That
        return value is of no significance, and is therefore ignored (note
        however that a C server back-end returns the atom 'void' instead
        of 'ok'). 

<A NAME="3.3.2"><!-- Empty --></A>
<H4>3.3.2 Cast (oneway)</H4>

<PRE>

    notification:       Op                      atom()          N = 0
                        {Op, I1, I2, ..., IN}   tuple()         N &#62; 0
                                                                (3.2.1)
</PRE>

<P>(There is of course no return message).

<A NAME="3.4"><!-- Empty --></A>
<H3>3.4 Gen_server Protocol</H3>

<P>Most of the IC generated code deals with encoding and decoding the
gen_server protocol. 

<A NAME="3.4.1"><!-- Empty --></A>
<H4>3.4.1 Call</H4>

<PRE>

    request:    {'$gen_call', {self(), Ref}, Request}           (4.1.1)

    reply:      {Ref, Reply}                                    (4.1.2)
</PRE>

<P>where Request and Reply are the messages defined in the previous
        chapter.

<A NAME="3.4.2"><!-- Empty --></A>
<H4>3.4.2 Cast</H4>

<PRE>
    notification:    {'$gen_cast', Notification}                (4.2.1)
</PRE>

<P>where Notification is the message defined in the previous chapter.

<A NAME="3.5"><!-- Empty --></A>
<H3>3.5 Erlang Distribution Protocol</H3>

<P>Messages (of interest here) between Erlang nodes are of the form: 

<PRE>
        Len(4), Type(1), CtrlBin(N), MsgBin(M)                  (5.1)
</PRE>

<P>Type is equal to 112 = PASS_THROUGH. 


<P>CtrlBin and MsgBin are Erlang terms in binary form (as if created
by term_to_binary/1), whence for each of them the first byte is
equal to 131 = VERSION_MAGIC.


<P>CtrlBin (of interest here) contains the SEND and REG_SEND control
messages, which are binary forms of the Erlang terms

<PRE>
        {2, Cookie, ToPid} ,                                    (5.2)
</PRE>

<P>and

<PRE>
        {6, FromPid, Cookie, ToName} ,                          (5.3)
</PRE>

<P>respectively.


<P>The CtrlBin(N) message is read and written by erl_interface code
(C), j_interface code (Java), or the Erlang distribution
implementation, which are invoked from IC generated code. 


<P>The MsgBin(N) is the &#34;real&#34; message, i.e. of the form described
in the previous section.

<CENTER>
<HR>
<SMALL>
Copyright &copy; 1991-2006
<A HREF="http://www.erlang.se">Ericsson AB</A><BR>
</SMALL>
</CENTER>
</BODY>
</HTML>