1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066
|
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<!-- This document was generated using DocBuilder 3.3.3 -->
<HTML>
<HEAD>
<TITLE>ets</TITLE>
<SCRIPT type="text/javascript" src="../../../../doc/erlresolvelinks.js">
</SCRIPT>
<STYLE TYPE="text/css">
<!--
.REFBODY { margin-left: 13mm }
.REFTYPES { margin-left: 8mm }
-->
</STYLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF" TEXT="#000000" LINK="#0000FF" VLINK="#FF00FF"
ALINK="#FF0000">
<!-- refpage -->
<CENTER>
<A HREF="http://www.erlang.se">
<IMG BORDER=0 ALT="[Ericsson AB]" SRC="min_head.gif">
</A>
<H1>ets</H1>
</CENTER>
<H3>MODULE</H3>
<DIV CLASS=REFBODY>
ets
</DIV>
<H3>MODULE SUMMARY</H3>
<DIV CLASS=REFBODY>
Built-In Term Storage
</DIV>
<H3>DESCRIPTION</H3>
<DIV CLASS=REFBODY>
<P>This module is an interface to the Erlang built-in term storage
BIFs. These provide the ability to store very large quantities of
data in an Erlang runtime system, and to have constant access
time to the data. (In the case of <CODE>ordered_set</CODE>, see below,
access time is proportional to the logarithm of the number of
objects stored).
<P>Data is organized as a set of dynamic tables, which can store
tuples. Each table is created by a process. When the process
terminates, the table is automatically destroyed. Every table has
access rights set at creation.
<P>Tables are divided into four different types, <CODE>set</CODE>,
<CODE>ordered_set</CODE>, <CODE>bag</CODE> and <CODE>duplicate_bag</CODE>.
A <CODE>set</CODE> or <CODE>ordered_set</CODE> table can only have one object
associated with each key. A <CODE>bag</CODE> or <CODE>duplicate_bag</CODE> can
have many objects associated with each key.
<P>The number of tables stored at one Erlang node is limited.
The current default limit is approximately 1400 tables. The upper
limit can be increased by setting the environment variable
<CODE>ERL_MAX_ETS_TABLES</CODE> before starting the Erlang runtime
system (i.e. with the <CODE>-env</CODE> option to
<CODE>erl</CODE>/<CODE>werl</CODE>). The actual limit may be slightly higher
than the one specified, but never lower.
<P>Note that there is no automatic garbage collection for tables.
Even if there are no references to a table from any process, it
will not automatically be destroyed unless the owner process
terminates. It can be destroyed explicitly by using
<CODE>delete/1</CODE>.
<P>Some implementation details:
<P>
<UL>
<LI>
In the current implementation, every object insert and
look-up operation results in one copy of the object.
</LI>
<LI>
This module provides very limited support for concurrent
updates. No locking is available, but the <CODE>safe_fixtable/2</CODE>
function can be used to guarantee that a sequence of
<CODE>first/1</CODE> and <CODE>next/2</CODE> calls will traverse the table
without errors even if another process (or the same process)
simultaneously deletes or inserts objects in the table.
</LI>
<LI>
<CODE>'$end_of_table'</CODE> should not be used as a key since
this atom is used to mark the end of the table when using
<CODE>first</CODE>/<CODE>next</CODE>.
</LI>
</UL>
<P>In general, the functions below will exit with reason
<CODE>badarg</CODE> if any argument is of the wrong format, or if the
table identifier is invalid.
</DIV>
<A NAME="match_spec"><!-- Empty --></A>
<H3>Match Specifications</H3>
<DIV CLASS=REFBODY>
<P>Some of the functions uses a <STRONG>match specification</STRONG>,
match_spec. A brief explanation is given in
<A HREF="#select/2">select/2</A>. For a detailed
description, see the chapter "Match specifications in Erlang" in
<STRONG>ERTS User's Guide</STRONG>.
</DIV>
<H3>DATA TYPES</H3>
<DIV CLASS=REFBODY>
<PRE>
match_spec()
a match specification, see above
tid()
a table identifier, as returned by new/2
</PRE>
</DIV>
<H3>EXPORTS</H3>
<P><A NAME="all/0"><STRONG><CODE>all() -> [Tab]</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Returns a list of all tables at the node. Named tables are
given by their names, unnamed tables are given by their
table identifiers.
</DIV>
<P><A NAME="delete/1"><STRONG><CODE>delete(Tab) -> true</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Deletes the entire table <CODE>Tab</CODE>.
</DIV>
<P><A NAME="delete/2"><STRONG><CODE>delete(Tab, Key) -> true</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
<STRONG><CODE>Key = term()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Deletes all objects with the key <CODE>Key</CODE> from the table
<CODE>Tab</CODE>.
</DIV>
<P><A NAME="delete_all_objects/1"><STRONG><CODE>delete_all_objects(Tab) -> true</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Delete all objects in the ETS table <CODE>Tab</CODE>. The deletion
is atomic.
</DIV>
<P><A NAME="delete_object/2"><STRONG><CODE>delete_object(Tab,Object) -> true</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
<STRONG><CODE>Object = tuple()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Delete the exact object <CODE>Object</CODE> from the ETS table,
leaving objects with the same key but other differences
(useful for type <CODE>bag</CODE>).
</DIV>
<P><A NAME="file2tab/1"><STRONG><CODE>file2tab(Filename) -> {ok,Tab} | {error,Reason}</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Filename = string() | atom()</CODE></STRONG><BR>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
<STRONG><CODE>Reason = term()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Reads a file produced by <CODE>tab2file/2</CODE> and creates the
corresponding table <CODE>Tab</CODE>.
</DIV>
<P><A NAME="first/1"><STRONG><CODE>first(Tab) -> Key | '$end_of_table'</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
<STRONG><CODE>Key = term()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Returns the first key <CODE>Key</CODE> in the table <CODE>Tab</CODE>.
If the table is of the <CODE>ordered_set</CODE> type, the first key
in Erlang term order will be returned. If the table is of any
other type, the first key according to the table's internal
order will be returned. If the table is empty,
<CODE>'$end_of_table'</CODE> will be returned.
<P>Use <CODE>next/2</CODE> to find subsequent keys in the table.
</DIV>
<P><A NAME="fixtable/2"><STRONG><CODE>fixtable(Tab, true|false) -> true | false</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>
<TABLE CELLPADDING=4>
<TR>
<TD VALIGN=TOP><IMG ALT="Warning!" SRC="warning.gif"></TD>
<TD>
<P>The function is retained for backwards compatibility only.
Use <CODE>safe_fixtable/2</CODE> instead. </TD>
</TR>
</TABLE>
<P>Fixes a table for safe traversal. The function is primarily
used by the Mnesia DBMS to implement functions which allow
write operations in a table, although the table is in the
process of being copied to disk or to another node. It does
not keep track of when and how tables are fixed.
</DIV>
<P><A NAME="foldl/3"><STRONG><CODE>foldl(Function, Acc0, Tab) -> Acc1</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Function = fun(A, AccIn) -> AccOut</CODE></STRONG><BR>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
<STRONG><CODE>Acc0 = Acc1 = AccIn = AccOut = term()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P><CODE>Acc0</CODE> is returned if the table is empty.
This function is similar to <CODE>lists:foldl/3</CODE>. The order in
which the elements of the table are traversed is unspecified,
except for tables of type <CODE>ordered_set</CODE>, for which they
are traversed first to last.
</DIV>
<P><A NAME="foldr/3"><STRONG><CODE>foldr(Function, Acc0, Tab) -> Acc1</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Function = fun(A, AccIn) -> AccOut</CODE></STRONG><BR>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
<STRONG><CODE>Acc0 = Acc1 = AccIn = AccOut = term()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P><CODE>Acc0</CODE> is returned if the table is empty.
This function is similar to <CODE>lists:foldr/3</CODE>. The order in
which the elements of the table are traversed is unspecified,
except for tables of type <CODE>ordered_set</CODE>, for which they
are traversed last to first.
</DIV>
<P><A NAME="from_dets/2"><STRONG><CODE>from_dets(Tab, DetsTab) -> Tab</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
<STRONG><CODE>DetsTab = atom()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Fills an already created ETS table with the objects in the
already opened Dets table named <CODE>DetsTab</CODE>. The existing
objects of the ETS table are kept unless overwritten.
</DIV>
<P><A NAME="fun2ms/1"><STRONG><CODE>fun2ms(LiteralFun) -> MatchSpec</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>LiteralFun -- see below</CODE></STRONG><BR>
<STRONG><CODE>MatchSpec = match_spec()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Pseudo function that by means of a <CODE>parse_transform</CODE>
translates <CODE>LiteralFun</CODE> typed as parameter in the
function call to a
<A HREF="#match_spec">match_spec</A>. With
"literal" is meant that the fun needs to textually be written
as the parameter of the function, it cannot be held in a
variable which in turn is passed to the function).
<P>The parse transform is implemented in the module
<CODE>ms_transform</CODE> and the source <STRONG>must</STRONG> include the
file <CODE>ms_transform.hrl</CODE> in <CODE>stdlib</CODE> for this
pseudo function to work. Failing to include the hrl file in
the source will result in a runtime error, not a compile
time ditto. The include file is easiest included by adding
the line
<CODE>-include_lib("stdlib/include/ms_transform.hrl").</CODE> to
the source file.
<P>The fun is very restricted, it can take only a single
parameter (the object to match): a sole variable or a
tuple. It needs to use the <CODE>is_</CODE>XXX guard tests.
Language constructs that have no representation
in a match_spec (like <CODE>if</CODE>, <CODE>case</CODE>, <CODE>receive</CODE>
etc) are not allowed.
<P>The return value is the resulting match_spec.
<P>Example:
<PRE>
1> <STRONG>ets:fun2ms(fun({M,N}) when N > 3 -> M end).</STRONG>
[{{'$1','$2'},[{'>','$2',3}],['$1']}]
</PRE>
<P>Variables from the environment can be imported, so that this
works:
<PRE>
2> <STRONG>X=3.</STRONG>
3
3> <STRONG>ets:fun2ms(fun({M,N}) when N > X -> M end).</STRONG>
[{{'$1','$2'},[{'>','$2',{const,3}}],['$1']}]
</PRE>
<P>The imported variables will be replaced by match_spec
<CODE>const</CODE> expressions, which is consistent with the
static scoping for Erlang funs. Local or global function
calls can not be in the guard or body of the fun however.
Calls to builtin match_spec functions of course is allowed:
<PRE>
4> <STRONG>ets:fun2ms(fun({M,N}) when N > X, is_atomm(M) -> M end).</STRONG>
Error: fun containing local Erlang function calls
('is_atomm' called in guard) cannot be translated into match_spec
{error,transform_error}
5> <STRONG>ets:fun2ms(fun({M,N}) when N > X, is_atom(M) -> M end).</STRONG>
[{{'$1','$2'},[{'>','$2',{const,3}},{is_atom,'$1'}],['$1']}]
</PRE>
<P>As can be seen by the example, the function can be called
from the shell too. The fun needs to be literally in the call
when used from the shell as well. Other means than the
parse_transform are used in the shell case, but more or less
the same restrictions apply (the exception being records,
as they are not handled by the shell).
<P>
<TABLE CELLPADDING=4>
<TR>
<TD VALIGN=TOP><IMG ALT="Warning!" SRC="warning.gif"></TD>
<TD>
<P>If the parse_transform is not applied to a module which
calls this pseudo function, the call will fail in runtime
(with a <CODE>badarg</CODE>). The module <CODE>ets</CODE> actually
exports a function with this name, but it should never
really be called except for when using the function in the
shell. If the <CODE>parse_transform</CODE> is properly applied by
including the <CODE>ms_transform.hrl</CODE> header file, compiled
code will never call the function, but the function call is
replaced by a literal match_spec. </TD>
</TR>
</TABLE>
<P>For more information, see
<A HREF="ms_transform.html#top">ms_transform(3)</A>.
</DIV>
<P><A NAME="i/0"><STRONG><CODE>i() -> void()</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY>
<P>Displays information about all ETS tables on tty.
</DIV>
<P><A NAME="i/1"><STRONG><CODE>i(Tab) -> void()</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Browses the table <CODE>Tab</CODE> on tty.
</DIV>
<P><A NAME="info/1"><STRONG><CODE>info(Tab) -> [{Item, Value}] | undefined</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
<STRONG><CODE>Item = atom(), see below</CODE></STRONG><BR>
<STRONG><CODE>Value = term(), see below</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Returns information about the table <CODE>Tab</CODE> as a list of
<CODE>{Item, Value}</CODE> tuples.
<P>
<TABLE CELLPADDING=4>
<TR>
<TD VALIGN=TOP><IMG ALT="Warning!" SRC="warning.gif"></TD>
<TD>
<P>In Erlang/OTP R10B and earlier releases, this function
erroneously returned a tuple. This has now been corrected.
</TD>
</TR>
</TABLE>
<P>
<UL>
<LI>
<CODE>Item=memory, Value=int()</CODE><BR>
The number of words allocated to the table.
</LI>
<LI>
<CODE>Item=owner, Value=pid()</CODE><BR>
The pid of the owner of the table.
</LI>
<LI>
<CODE>Item=name, Value=atom()</CODE><BR>
The name of the table.
</LI>
<LI>
<CODE>Item=size, Value=int()</CODE><BR>
The number of objects inserted in the table.
</LI>
<LI>
<CODE>Item=node, Value=atom()</CODE><BR>
The node where the table is stored. This field is no longer
meaningful as tables cannot be accessed from other nodes.
</LI>
<LI>
<CODE>Item=named_table, Value=true|false</CODE><BR>
Indicates if the table is named or not.
</LI>
<LI>
<CODE>Item=type, Value=set|ordered_set|bag|duplicate_bag</CODE>
<BR>
The table type.
</LI>
<LI>
<CODE>Item=keypos, Value=int()</CODE><BR>
The key position.
</LI>
<LI>
<CODE>Item=protection, Value=public|protected|private</CODE><BR>
The table access rights.
</LI>
</UL>
</DIV>
<P><A NAME="info/2"><STRONG><CODE>info(Tab, Item) -> Value | undefined</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
<STRONG><CODE>Item, Value - see below</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Returns the information associated with <CODE>Item</CODE> for
the table <CODE>Tab</CODE>. In addition to the <CODE>{Item,Value}</CODE>
pairs defined for <CODE>info/1</CODE>, the following items are
allowed:
<P>
<UL>
<LI>
<CODE>Item=fixed, Value=true|false</CODE><BR>
Indicates if the table is fixed by any process or not.
</LI>
<LI>
<CODE>Item=safe_fixed, Value={FirstFixed,Info}|false
</CODE><BR>
If the table has been fixed using <CODE>safe_fixtable/2</CODE>,
the call returns a tuple where <CODE>FirstFixed</CODE> is the
time when the table was first fixed by a process, which
may or may not be one of the processes it is fixed by
right now.<BR>
<CODE>Info</CODE> is a possibly empty lists of tuples
<CODE>{Pid,RefCount}</CODE>, one tuple for every process the
table is fixed by right now. <CODE>RefCount</CODE> is the value
of the reference counter, keeping track of how many times
the table has been fixed by the process.<BR>
If the table never has been fixed, the call returns
<CODE>false</CODE>.<BR>
</LI>
</UL>
</DIV>
<P><A NAME="init_table/2"><STRONG><CODE>init_table(Name, InitFun) -> true</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Name = atom()</CODE></STRONG><BR>
<STRONG><CODE>InitFun = fun(Arg) -> Res</CODE></STRONG><BR>
<STRONG><CODE>Arg = read | close</CODE></STRONG><BR>
<STRONG><CODE>Res = end_of_input | {[object()], InitFun} | term()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Replaces the existing objects of the table <CODE>Tab</CODE> with
objects created by calling the input function <CODE>InitFun</CODE>,
see below. This function is provided for compatibility with
the <CODE>dets</CODE> module, it is not more efficient than filling
a table by using <CODE>ets:insert/2</CODE>.
<P>When called with the argument <CODE>read</CODE> the function
<CODE>InitFun</CODE> is assumed to return <CODE>end_of_input</CODE> when
there is no more input, or <CODE>{Objects, Fun}</CODE>, where
<CODE>Objects</CODE> is a list of objects and <CODE>Fun</CODE> is a new
input function. Any other value Value is returned as an error
<CODE>{error, {init_fun, Value}}</CODE>. Each input function will be
called exactly once, and should an error occur, the last
function is called with the argument <CODE>close</CODE>, the reply
of which is ignored.
<P>If the type of the table is <CODE>set</CODE> and there is more
than one object with a given key, one of the objects is
chosen. This is not necessarily the last object with the given
key in the sequence of objects returned by the input
functions. This holds also for duplicated
objects stored in tables of type <CODE>duplicate_bag</CODE>.
</DIV>
<P><A NAME="insert/2"><STRONG><CODE>insert(Tab, ObjectOrObjects) -> true</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
<STRONG><CODE>ObjectOrObjects = tuple() | [tuple()]</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Inserts the object or all of the objects in the list
<CODE>ObjectOrObjects</CODE> into the table <CODE>Tab</CODE>. If there
already exists an object with the same key as one of the
objects, and the table is a <CODE>set</CODE> or <CODE>ordered_set</CODE>
table, the old object will be replaced. If the list contains
more than one object with the same key and the table is a
<CODE>set/ordered_set</CODE>, one will be inserted, which one is
not defined.
</DIV>
<P><A NAME="insert_new/2"><STRONG><CODE>insert_new(Tab, ObjectOrObjects) -> bool()</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
<STRONG><CODE>ObjectOrObjects = tuple() | [tuple()]</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>This function works exactly like <CODE>insert/2</CODE>, with the
exception that instead of overwriting objects with the same
key (in the case of <CODE>set</CODE> or <CODE>ordered_set</CODE>) or
adding more objects with keys already existing in the table
(in the case of <CODE>bag</CODE> and <CODE>duplicate_bag</CODE>), it
simply returns <CODE>false</CODE>. If <CODE>ObjectOrObjects</CODE> is a
list, the function checks <STRONG>every</STRONG> key prior to
inserting anything. Nothing will be inserted if not
<STRONG>all</STRONG> keys present in the list are absent from the
table.
</DIV>
<P><A NAME="is_compiled_ms/1"><STRONG><CODE>is_compiled_ms(Term) -> bool()</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Term = term()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>This function is used to check if a term is a valid
compiled <A HREF="#match_spec">match_spec</A>.
The compiled match_spec is an opaque datatype which can
<STRONG>not</STRONG> be sent between Erlang nodes nor be stored on
disk. Any attempt to create an external representation of a
compiled match_spec will result in an empty binary
(<CODE><<>></CODE>). As an example, the following
expression:
<PRE>
ets:is_compiled_ms(ets:match_spec_compile([{'_',[],[true]}])).
</PRE>
<P>will yield <CODE>true</CODE>, while the following expressions:
<PRE>
MS = ets:match_spec_compile([{'_',[],[true]}]),
Broken = binary_to_term(term_to_binary(MS)),
ets:is_compiled_ms(Broken).
</PRE>
<P>will yield false, as the variable <CODE>Broken</CODE> will contain
a compiled match_spec that has passed through external
representation.
<P>
<TABLE CELLPADDING=4>
<TR>
<TD VALIGN=TOP><IMG ALT="Note!" SRC="note.gif"></TD>
<TD>
<P>The fact that compiled match_specs has no external
representation is for performance reasons. It may be subject
to change in future releases, while this interface will
still remain for backward compatibility reasons. </TD>
</TR>
</TABLE>
</DIV>
<P><A NAME="last/1"><STRONG><CODE>last(Tab) -> Key | '$end_of_table'</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
<STRONG><CODE>Key = term()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Returns the last key <CODE>Key</CODE> according to Erlang term
order in the table <CODE>Tab</CODE> of the <CODE>ordered_set</CODE> type.
If the table is of any other type, the function is synonymous
to <CODE>first/2</CODE>. If the table is empty,
<CODE>'$end_of_table'</CODE> is returned.
<P>Use <CODE>prev/2</CODE> to find preceding keys in the table.
</DIV>
<P><A NAME="lookup/2"><STRONG><CODE>lookup(Tab, Key) -> [Object]</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
<STRONG><CODE>Key = term()</CODE></STRONG><BR>
<STRONG><CODE>Object = tuple()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Returns a list of all objects with the key <CODE>Key</CODE> in
the table <CODE>Tab</CODE>.
<P>If the table is of type <CODE>set</CODE> or <CODE>ordered_set</CODE>,
the function returns either the empty list or a list with one
element, as there cannot be more than one object with the same
key. If the table is of type <CODE>bag</CODE> or
<CODE>duplicate_bag</CODE>, the function returns a list of
arbitrary length.
<P>Note that the time order of object insertions is preserved;
The first object inserted with the given key will be first
in the resulting list, and so on.
<P>Insert and look-up times in tables of type <CODE>set</CODE>,
<CODE>bag</CODE> and <CODE>duplicate_bag</CODE> are constant, regardless
of the size of the table. For the <CODE>ordered_set</CODE>
data-type, time is proportional to the (binary) logarithm of
the number of objects.
</DIV>
<P><A NAME="lookup_element/3"><STRONG><CODE>lookup_element(Tab, Key, Pos) -> Elem</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
<STRONG><CODE>Key = term()</CODE></STRONG><BR>
<STRONG><CODE>Pos = int()</CODE></STRONG><BR>
<STRONG><CODE>Elem = term() | [term()]</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>If the table <CODE>Tab</CODE> is of type <CODE>set</CODE> or
<CODE>ordered_set</CODE>, the function returns the <CODE>Pos</CODE>:th
element of the object with the key <CODE>Key</CODE>.
<P>If the table is of type <CODE>bag</CODE> or <CODE>duplicate_bag</CODE>,
the functions returns a list with the <CODE>Pos</CODE>:th element of
every object with the key <CODE>Key</CODE>.
<P>If no object with the key <CODE>Key</CODE> exists, the function
will exit with reason <CODE>badarg</CODE>.
</DIV>
<P><A NAME="match/2"><STRONG><CODE>match(Tab, Pattern) -> [Match]</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
<STRONG><CODE>Pattern = tuple()</CODE></STRONG><BR>
<STRONG><CODE>Match = [term()]</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Matches the objects in the table <CODE>Tab</CODE> against the
pattern <CODE>Pattern</CODE>.
<P>A pattern is a term that may contain:
<P>
<UL>
<LI>
bound parts (Erlang terms),
</LI>
<LI>
<CODE>'_'</CODE> which matches any Erlang term, and
</LI>
<LI>
pattern variables: <CODE>'$N'</CODE> where
<CODE>N</CODE>=0,1,...
</LI>
</UL>
<P>The function returns a list with one element for each
matching object, where each element is an ordered list of
pattern variable bindings. An example:
<PRE>
6> <STRONG>ets:match(T, '$1').</STRONG> % Matches every object in the table
[[{rufsen,dog,7}],[{brunte,horse,5}],[{ludde,dog,5}]]
7> <STRONG>ets:match(T, {'_',dog,'$1'}).</STRONG>
[[7],[5]]
8> <STRONG>ets:match(T, {'_',cow,'$1'}).</STRONG>
[]
</PRE>
<P>If the key is specified in the pattern, the match is very
efficient. If the key is not specified, i.e. if it is a
variable or an underscore, the entire table must be searched.
The search time can be substantial if the table is very large.
<P>On tables of the <CODE>ordered_set</CODE> type, the result is in
the same order as in a <CODE>first/next</CODE> traversal.
</DIV>
<P><A NAME="match/3"><STRONG><CODE>match(Tab, Pattern, Limit) -> {[Match],Continuation} |
'$end_of_table'</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
<STRONG><CODE>Pattern = tuple()</CODE></STRONG><BR>
<STRONG><CODE>Match = [term()]</CODE></STRONG><BR>
<STRONG><CODE>Continuation = term()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Works like <CODE>ets:match/2</CODE> but only returns a limited
(<CODE>Limit</CODE>) number of matching objects. The
<CODE>Continuation</CODE> term can then be used in subsequent calls
to <CODE>ets:match/1</CODE> to get the next chunk of matching
objects. This is a space efficient way to work on objects in a
table which is still faster than traversing the table object
by object using <CODE>ets:first/1</CODE> and <CODE>ets:next/1</CODE>.
<P><CODE>'$end_of_table'</CODE> is returned if the table is empty.
</DIV>
<P><A NAME="match/1"><STRONG><CODE>match(Continuation) -> {[Match],Continuation} |
'$end_of_table'</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Match = [term()]</CODE></STRONG><BR>
<STRONG><CODE>Continuation = term()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Continues a match started with <CODE>ets:match/3</CODE>. The next
chunk of the size given in the initial <CODE>ets:match/3</CODE>
call is returned together with a new <CODE>Continuation</CODE>
that can be used in subsequent calls to this function.
<P><CODE>'$end_of_table'</CODE> is returned when there are no more
objects in the table.
</DIV>
<P><A NAME="match_delete/2"><STRONG><CODE>match_delete(Tab, Pattern) -> true</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
<STRONG><CODE>Pattern = tuple()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Deletes all objects which match the pattern <CODE>Pattern</CODE>
from the table <CODE>Tab</CODE>. See <CODE>match/2</CODE> for a
description of patterns.
</DIV>
<P><A NAME="match_object/2"><STRONG><CODE>match_object(Tab, Pattern) -> [Object]</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
<STRONG><CODE>Pattern = Object = tuple()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Matches the objects in the table <CODE>Tab</CODE> against the
pattern <CODE>Pattern</CODE>. See <CODE>match/2</CODE> for a description
of patterns. The function returns a list of all objects which
match the pattern.
<P>If the key is specified in the pattern, the match is very
efficient. If the key is not specified, i.e. if it is a
variable or an underscore, the entire table must be searched.
The search time can be substantial if the table is very large.
<P>On tables of the <CODE>ordered_set</CODE> type, the result is in
the same order as in a <CODE>first/next</CODE> traversal.
</DIV>
<P><A NAME="match_object/3"><STRONG><CODE>match_object(Tab, Pattern, Limit) -> {[Match],Continuation}
| '$end_of_table'</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
<STRONG><CODE>Pattern = tuple()</CODE></STRONG><BR>
<STRONG><CODE>Match = [term()]</CODE></STRONG><BR>
<STRONG><CODE>Continuation = term()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Works like <CODE>ets:match_object/2</CODE> but only returns a
limited (<CODE>Limit</CODE>) number of matching objects. The
<CODE>Continuation</CODE> term can then be used in subsequent calls
to <CODE>ets:match_object/1</CODE> to get the next chunk of matching
objects. This is a space efficient way to work on objects in a
table which is still faster than traversing the table object
by object using <CODE>ets:first/1</CODE> and <CODE>ets:next/1</CODE>.
<P><CODE>'$end_of_table'</CODE> is returned if the table is empty.
</DIV>
<P><A NAME="match_object/1"><STRONG><CODE>match_object(Continuation) -> {[Match],Continuation} |
'$end_of_table'</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Match = [term()]</CODE></STRONG><BR>
<STRONG><CODE>Continuation = term()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Continues a match started with <CODE>ets:match_object/3</CODE>.
The next chunk of the size given in the initial
<CODE>ets:match_object/3</CODE> call is returned together with a
new <CODE>Continuation</CODE> that can be used in subsequent calls
to this function.
<P><CODE>'$end_of_table'</CODE> is returned when there are no more
objects in the table.
</DIV>
<P><A NAME="match_spec_compile/1"><STRONG><CODE>match_spec_compile(MatchSpec) -> CompiledMatchSpec</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>MatchSpec = match_spec()</CODE></STRONG><BR>
<STRONG><CODE>CompiledMatchSpec = comp_match_spec()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>This function transforms a
<A HREF="#match_spec">match_spec</A> into an
internal representation that can be used in subsequent calls
to <CODE>ets:match_spec_run/2</CODE>. The internal representation is
opaque and can not be converted to external term format and
then back again without losing its properties (meaning it can
not be sent to a process on another node and still remain a
valid compiled match_spec, nor can it be stored on disk).
The validity of a compiled match_spec can be checked using
<CODE>ets:is_compiled_ms/1</CODE>.
<P>If the term <CODE>MatchSpec</CODE> can not be compiled (does not
represent a valid match_spec), a <CODE>badarg</CODE> fault is
thrown.
<P>
<TABLE CELLPADDING=4>
<TR>
<TD VALIGN=TOP><IMG ALT="Note!" SRC="note.gif"></TD>
<TD>
<P>This function has limited use in normal code, it is used by
Dets to perform the <CODE>dets:select</CODE> operations. </TD>
</TR>
</TABLE>
</DIV>
<P><A NAME="match_spec_run/2"><STRONG><CODE>match_spec_run(List,CompiledMatchSpec) -> list()</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>List = [ tuple() ]</CODE></STRONG><BR>
<STRONG><CODE>CompiledMatchSpec = comp_match_spec()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>This function executes the matching specified in a
compiled <A HREF="#match_spec">match_spec</A> on
a list of tuples. The <CODE>CompiledMatchSpec</CODE> term should be
the result of a call to <CODE>ets:match_spec_compile/1</CODE> and
is hence the internal representation of the match_spec one
wants to use.
<P>The matching will be executed on each element in <CODE>List</CODE>
and the function returns a list containing all results. If an
element in <CODE>List</CODE> does not match, nothing is returned
for that element. The length of the result list is therefore
equal or less than the the length of the parameter
<CODE>List</CODE>. The two calls in the following example will give
the same result (but certainly not the same execution
time...):
<PRE>
Table = ets:new...
MatchSpec = ....
% The following call...
ets:match_spec_run(ets:tab2list(Table),
ets:match_spec_compile(MatchSpec)),
% ...will give the same result as the more common (and more efficient)
ets:select(Table,MatchSpec),
</PRE>
<P>
<TABLE CELLPADDING=4>
<TR>
<TD VALIGN=TOP><IMG ALT="Note!" SRC="note.gif"></TD>
<TD>
<P>This function has limited use in normal code, it is used by
Dets to perform the <CODE>dets:select</CODE> operations and by
Mnesia during transactions. </TD>
</TR>
</TABLE>
</DIV>
<P><A NAME="member/2"><STRONG><CODE>member(Tab, Key) -> true | false</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
<STRONG><CODE>Key = term()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Works like <CODE>lookup/2</CODE>, but does not return the objects.
The function returns <CODE>true</CODE> if one or more elements in
the table has the key <CODE>Key</CODE>, <CODE>false</CODE> otherwise.
</DIV>
<P><A NAME="new/2"><STRONG><CODE>new(Name, Options) -> tid()</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Name = atom()</CODE></STRONG><BR>
<STRONG><CODE>Options = [Option]</CODE></STRONG><BR>
<STRONG><CODE>Option = Type | Access | named_table | {keypos,Pos}</CODE></STRONG><BR>
<STRONG><CODE>Type = set | ordered_set | bag | duplicate_bag
</CODE></STRONG><BR>
<STRONG><CODE>Access = public | protected | private</CODE></STRONG><BR>
<STRONG><CODE>Pos = int()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Creates a new table and returns a table identifier which can
be used in subsequent operations. The table identifier can be
sent to other processes so that a table can be shared between
different processes within a node.
<P>The parameter <CODE>Options</CODE> is a list of atoms which
specifies table type, access rights, key position and if the
table is named or not. If one or more options are left out,
the default values are used. This means that not specifying
any options (<CODE>[]</CODE>) is the same as specifying
<CODE>[set,protected,{keypos,1}]</CODE>.
<P>
<UL>
<LI>
<CODE>set</CODE>
The table is a <CODE>set</CODE> table - one key, one object,
no order among objects. This is the default table type.
<BR>
</LI>
<LI>
<CODE>ordered_set</CODE>
The table is a <CODE>ordered_set</CODE> table - one key, one
object, ordered in Erlang term order, which is the order
implied by the < and > operators. Tables of this type
have a somewhat different behavior in some situations
than tables of the other types.<BR>
</LI>
<LI>
<CODE>bag</CODE>
The table is a <CODE>bag</CODE> table which can have many
objects, but only one instance of each object, per key.
<BR>
</LI>
<LI>
<CODE>duplicate_bag</CODE>
The table is a <CODE>duplicate_bag</CODE> table which can have
many objects, including multiple copies of the same
object, per key.<BR>
</LI>
<LI>
<CODE>public</CODE>
Any process may read or write to the table.<BR>
</LI>
<LI>
<CODE>protected</CODE>
The owner process can read and write to the table. Other
processes can only read the table. This is the default
setting for the access rights.<BR>
</LI>
<LI>
<CODE>private</CODE>
Only the owner process can read or write to the table.<BR>
</LI>
<LI>
<CODE>named_table</CODE>
If this option is present, the name <CODE>Name</CODE> is
associated with the table identifier. The name can then
be used instead of the table identifier in subsequent
operations.<BR>
</LI>
<LI>
<CODE>{keypos,Pos}</CODE>
Specfies which element in the stored tuples should be
used as key. By default, it is the first element, i.e.
<CODE>Pos=1</CODE>. However, this is not always appropriate. In
particular, we do not want the first element to be the
key if we want to store Erlang records in a table.<BR>
Note that any tuple stored in the table must have at
least <CODE>Pos</CODE> number of elements.<BR>
</LI>
</UL>
</DIV>
<P><A NAME="next/2"><STRONG><CODE>next(Tab, Key1) -> Key2 | '$end_of_table'</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
<STRONG><CODE>Key1 = Key2 = term()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Returns the next key <CODE>Key2</CODE>, following the key
<CODE>Key1</CODE> in the table <CODE>Tab</CODE>. If the table is of the
<CODE>ordered_set</CODE> type, the next key in Erlang term order is
returned. If the table is of any other type, the next key
according to the table's internal order is returned. If there
is no next key, <CODE>'$end_of_table'</CODE> is returned.
<P>Use <CODE>first/1</CODE> to find the first key in the table.
<P>Unless a table of type <CODE>set</CODE>, <CODE>bag</CODE> or
<CODE>duplicate_bag</CODE> is protected using
<CODE>safe_fixtable/2</CODE>, see below, a traversal may fail if
concurrent updates are made to the table. If the table is of
type <CODE>ordered_set</CODE>, the function returns the next key in
order, even if the object does no longer exist.
</DIV>
<P><A NAME="prev/2"><STRONG><CODE>prev(Tab, Key1) -> Key2 | '$end_of_table'</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
<STRONG><CODE>Key1 = Key2 = term()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Returns the previous key <CODE>Key2</CODE>, preceding the key
<CODE>Key1</CODE> according the Erlang term order in the table
<CODE>Tab</CODE> of the <CODE>ordered_set</CODE> type. If the table is of
any other type, the function is synonymous to <CODE>next/2</CODE>.
If there is no previous key, <CODE>'$end_of_table'</CODE> is
returned.
<P>Use <CODE>last/1</CODE> to find the last key in the table.
</DIV>
<P><A NAME="rename/2"><STRONG><CODE>rename(Tab, Name) -> Name</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = Name = atom()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Renames the named table <CODE>Tab</CODE> to the new name
<CODE>Name</CODE>. Afterwards, the old name can not be used to
access the table. Renaming an unnamed table has no effect.
</DIV>
<P><A NAME="repair_continuation/2"><STRONG><CODE>repair_continuation(Continuation, MatchSpec) -> Continuation
</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Continuation = term()</CODE></STRONG><BR>
<STRONG><CODE>MatchSpec = match_spec()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>This function can be used to restore an opaque continuation
returned by <CODE>ets:select/3</CODE> or <CODE>ets:select/1</CODE> if the
continuation has passed through external term format (been
sent between nodes or stored on disk).
<P>The reason for this function is that continuation terms
contain compiled match_specs and therefore will be
invalidated if converted to external term format. Given that
the original match_spec is kept intact, the continuation can
be restored, meaning it can once again be used in subsequent
<CODE>ets:select/1</CODE> calls even though it has been stored on
disk or on another node.
<P>As an example, the following seqence of calls will fail:
<PRE>
T=ets:new(x,[]),
...
{_,C} = ets:select(T,ets:fun2ms(fun({N,_}=A)
when (N rem 10) =:= 0 ->
A
end),10),
Broken = binary_to_term(term_to_binary(C)),
ets:select(Broken).
</PRE>
<P>...while the following sequence will work:
<PRE>
T=ets:new(x,[]),
...
MS = ets:fun2ms(fun({N,_}=A)
when (N rem 10) =:= 0 ->
A
end),
{_,C} = ets:select(T,MS,10),
Broken = binary_to_term(term_to_binary(C)),
ets:select(ets:repair_continuation(Broken,MS)).
</PRE>
<P>...as the call to <CODE>ets:repair_continuation/2</CODE> will
reestablish the (deliberately) invalidated continuation
<CODE>Broken</CODE>.
<P>
<TABLE CELLPADDING=4>
<TR>
<TD VALIGN=TOP><IMG ALT="Note!" SRC="note.gif"></TD>
<TD>
<P>This function is very rarely needed in application code. It
is used by Mnesia to implement distributed <CODE>select/3</CODE>
and <CODE>select/1</CODE> sequences. A normal application would
either use Mnesia or keep the continuation from being
converted to external format.
<P>The reason for not having an external representation of a
compiled match_spec is performance. It may be subject to
change in future releases, while this interface will remain
for backward compatibility. </TD>
</TR>
</TABLE>
</DIV>
<P><A NAME="safe_fixtable/2"><STRONG><CODE>safe_fixtable(Tab, true|false) -> true</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Fixes a table of the <CODE>set</CODE>, <CODE>bag</CODE> or
<CODE>duplicate_bag</CODE> table type for safe traversal.
<P>A process fixes a table by calling
<CODE>safe_fixtable(Tab,true)</CODE>. The table remains fixed until
the process releases it by calling
<CODE>safe_fixtable(Tab,false)</CODE>, or until the process
terminates.
<P>If several processes fix a table, the table will remain fixed
until all processes have released it (or terminated).
A reference counter is kept on a per process basis, and N
consecutive fixes requires N releases to actually release
the table.
<P>When a table is fixed, a sequence of <CODE>first/1</CODE> and
<CODE>next/2</CODE> calls are guaranteed to succeed even if objects
are removed during the traversal. An example:
<PRE>
clean_all_with_value(Tab,X) ->
safe_fixtable(Tab,true),
clean_all_with_value(Tab,X,ets:first(Tab)),
safe_fixtable(Tab,false).
clean_all_with_value(Tab,X,'$end_of_table') ->
true;
clean_all_with_value(Tab,X,Key) ->
case ets:lookup(Tab,Key) of
[{Key,X}] ->
ets:delete(Tab,Key);
_ ->
true
end,
clean_all_with_value(Tab,X,ets:next(Tab,Key)).
</PRE>
<P>Note that no deleted objects are actually removed from a
fixed table until it has been released. If a process fixes a
table but never releases it, the memory used by the deleted
objects will never be freed. The performance of operations on
the table will also degrade significantly.
<P>Use <CODE>info/2</CODE> to retrieve information about which
processes have fixed which tables. A system with a lot of
processes fixing tables may need a monitor which sends alarms
when tables have been fixed for too long.
<P>Note that for tables of the <CODE>ordered_set</CODE> type,
<CODE>safe_fixtable/2</CODE> is not necessary as calls to
<CODE>first/1</CODE> and <CODE>next/2</CODE> will always succeed.
</DIV>
<P><A NAME="select/2"><STRONG><CODE>select(Tab, MatchSpec) -> [Match]</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
<STRONG><CODE>Match = term()</CODE></STRONG><BR>
<STRONG><CODE>MatchSpec = match_spec()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Matches the objects in the table <CODE>Tab</CODE> using a
<A HREF="#match_spec">match_spec</A>. This is a
more general call than the <CODE>ets:match/2</CODE> and
<CODE>ets:match_object/2</CODE> calls. In its simplest forms the
match_specs look like this:
<P>
<UL>
<LI>
MatchSpec = [MatchFunction]
</LI>
<LI>
MatchFunction = {MatchHead, [Guard], [Result]}
</LI>
<LI>
MatchHead = "Pattern as in ets:match"
</LI>
<LI>
Guard = {"Guardtest name", ...}
</LI>
<LI>
Result = "Term construct"
</LI>
</UL>
<P>This means that the match_spec is always a list of one or
more tuples (of arity 3). The tuples first element should be
a pattern as described in the documentation of
<CODE>ets:match/2</CODE>. The second element of the tuple should
be a list of 0 or more guard tests (described below). The
third element of the tuple should be a list containing a
description of the value to actually return. In almost all
normal cases the list contains exactly one term which fully
describes the value to return for each object.
<P>The return value is constructed using the "match variables"
bound in the MatchHead or using the special match variables
<CODE>'$_'</CODE> (the whole matching object) and <CODE>'$$'</CODE> (all
match variables in a list), so that the following
<CODE>ets:match/2</CODE> expression:
<PRE>
ets:match(Tab,{'$1','$2','$3'})
</PRE>
<P>is exactly equivalent to:
<PRE>
ets:select(Tab,[{{'$1','$2','$3'},[],['$$']}])
</PRE>
<P>- and the following <CODE>ets:match_object/2</CODE> call:
<PRE>
ets:match_object(Tab,{'$1','$2','$1'})
</PRE>
<P>is exactly equivalent to
<PRE>
ets:select(Tab,[{{'$1','$2','$1'},[],['$_']}])
</PRE>
<P>Composite terms can be constructed in the <CODE>Result</CODE> part
either by simply writing a list, so that this code:
<PRE>
ets:select(Tab,[{{'$1','$2','$3'},[],['$$']}])
</PRE>
<P>gives the same output as:
<PRE>
ets:select(Tab,[{{'$1','$2','$3'},[],[['$1','$2','$3']]}])
</PRE>
<P>i.e. all the bound variables in the match head as a list. If
tuples are to be constructed, one has to write a tuple of
arity 1 with the single element in the tuple being the tuple
one wants to construct (as an ordinary tuple could be mistaken
for a <CODE>Guard</CODE>). Therefore the following call:
<PRE>
ets:select(Tab,[{{'$1','$2','$1'},[],['$_']}])
</PRE>
<P>gives the same output as:
<PRE>
ets:select(Tab,[{{'$1','$2','$1'},[],[{{'$1','$2','$3'}}]}])
</PRE>
<P>- this syntax is equivalent to the syntax used in the trace
patterns (see
<A HREF="javascript:erlhref('../../../../', 'runtime_tools', 'dbg.html');">dbg(3)</A>).
<P>The <CODE>Guard</CODE>s are constructed as tuples where the first
element is the name of the test and the rest of the elements
are the parameters of the test. To check for a specific type
(say a list) of the element bound to the match variable
<CODE>'$1'</CODE>, one would write the test as
<CODE>{is_list, '$1'}</CODE>. If the test fails, the object in the
table will not match and the next <CODE>MatchFunction</CODE> (if
any) will be tried. Most guard tests present in Erlang can be
used, but only the new versions prefixed <CODE>is_</CODE> are
allowed (like <CODE>is_float</CODE>, <CODE>is_atom</CODE> etc).
<P>The <CODE>Guard</CODE> section can also contain logic and
arithmetic operations, which are written with the same syntax
as the guard tests (prefix notation), so that a guard test
written in Erlang looking like this:
<PRE>
is_integer(X), is_integer(Y), X + Y < 4711
</PRE>
<P>is expressed like this (X replaced with '$1' and Y with
'$2'):
<PRE>
[{is_integer, '$1'}, {is_integer, '$2'}, {'<', {'+', '$1', '$2'}, 4711}]
</PRE>
</DIV>
<P><A NAME="select/3"><STRONG><CODE>select(Tab, MatchSpec, Limit) -> {[Match],Continuation} |
'$end_of_table'</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
<STRONG><CODE>Match = term()</CODE></STRONG><BR>
<STRONG><CODE>MatchSpec = match_spec()</CODE></STRONG><BR>
<STRONG><CODE>Continuation = term()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Works like <CODE>ets:select/2</CODE> but only returns a limited
(<CODE>Limit</CODE>) number of matching objects. The
<CODE>Continuation</CODE> term can then be used in subsequent calls
to <CODE>ets:select/1</CODE> to get the next chunk of matching
objects. This is a space efficient way to work on objects in a
table which is still faster than traversing the table object
by object using <CODE>ets:first/1</CODE> and <CODE>ets:next/1</CODE>.
<P><CODE>'$end_of_table'</CODE> is returned if the table is empty.
</DIV>
<P><A NAME="select/1"><STRONG><CODE>select(Continuation) -> {[Match],Continuation} |
'$end_of_table'</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Match = term()</CODE></STRONG><BR>
<STRONG><CODE>Continuation = term()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Continues a match started with
<CODE>ets:select/3</CODE>. The next
chunk of the size given in the initial <CODE>ets:select/3</CODE>
call is returned together with a new <CODE>Continuation</CODE>
that can be used in subsequent calls to this function.
<P><CODE>'$end_of_table'</CODE> is returned when there are no more
objects in the table.
</DIV>
<P><A NAME="select_delete/2"><STRONG><CODE>select_delete(Tab, MatchSpec) -> NumDeleted</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
<STRONG><CODE>Object = tuple()</CODE></STRONG><BR>
<STRONG><CODE>MatchSpec = match_spec()</CODE></STRONG><BR>
<STRONG><CODE>NumDeleted = integer()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Matches the objects in the table <CODE>Tab</CODE> using a
<A HREF="#match_spec">match_spec</A>. If the
match_spec returns <CODE>true</CODE> for an object, that object is
removed from the table. For any other result from the
match_spec the object is retained. This is a more general
call than the <CODE>ets:match_delete/2</CODE> call.
<P>The function returns the number of objects actually
deleted from the table.
</DIV>
<P><A NAME="select_count/2"><STRONG><CODE>select_count(Tab, MatchSpec) -> NumMatched</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
<STRONG><CODE>Object = tuple()</CODE></STRONG><BR>
<STRONG><CODE>MatchSpec = match_spec()</CODE></STRONG><BR>
<STRONG><CODE>NumMatched = integer()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Matches the objects in the table <CODE>Tab</CODE> using a
<A HREF="#match_spec">match_spec</A>. If the
match_spec returns <CODE>true</CODE> for an object, that object
considered a match and is counted. For any other result from
the match_spec the object is not considered a match and is
therefore not counted.
<P>The function could be described as a <CODE>match_delete/2</CODE>
that does not actually delete any elements, but only counts
them.
<P>The function returns the number of objects matched.
</DIV>
<P><A NAME="slot/2"><STRONG><CODE>slot(Tab, I) -> [Object] | '$end_of_table'</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
<STRONG><CODE>I = int()</CODE></STRONG><BR>
<STRONG><CODE>Object = tuple()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>This function is mostly for debugging purposes, Normally
one should use <CODE>first/next</CODE> or <CODE>last/prev</CODE> instead.
<P>Returns all objects in the <CODE>I</CODE>:th slot of the table
<CODE>Tab</CODE>. A table can be traversed by repeatedly calling
the function, starting with the first slot <CODE>I=0</CODE> and
ending when <CODE>'$end_of_table'</CODE> is returned.
The function will fail with reason <CODE>badarg</CODE> if the
<CODE>I</CODE> argument is out of range.
<P>Unless a table of type <CODE>set</CODE>, <CODE>bag</CODE> or
<CODE>duplicate_bag</CODE> is protected using
<CODE>safe_fixtable/2</CODE>, see above, a traversal may fail if
concurrent updates are made to the table. If the table is of
type <CODE>ordered_set</CODE>, the function returns a list
containing the <CODE>I</CODE>:th object in Erlang term order.
</DIV>
<P><A NAME="tab2file/2"><STRONG><CODE>tab2file(Tab, Filename) -> ok | {error,Reason}</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
<STRONG><CODE>Filename = string() | atom()</CODE></STRONG><BR>
<STRONG><CODE>Reason = term()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Dumps the table <CODE>Tab</CODE> to the file <CODE>Filename</CODE>.
The implementation of this function is not efficient.
</DIV>
<P><A NAME="tab2list/1"><STRONG><CODE>tab2list(Tab) -> [Object]</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
<STRONG><CODE>Object = tuple()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Returns a list of all objects in the table <CODE>Tab</CODE>.
</DIV>
<P><A NAME="table/2"><STRONG><CODE>table(Tab [, Options]) -> QueryHandle</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
<STRONG><CODE>QueryHandle = -a query handle, see qlc(3)-</CODE></STRONG><BR>
<STRONG><CODE>Options = [Option] | Option</CODE></STRONG><BR>
<STRONG><CODE>Option = {n_objects, NObjects}
| {traverse, TraverseMethod}</CODE></STRONG><BR>
<STRONG><CODE>NObjects = default | integer() > 0</CODE></STRONG><BR>
<STRONG><CODE>TraverseMethod = first_next
| last_prev
| select
| {select, MatchSpec}</CODE></STRONG><BR>
<STRONG><CODE>MatchSpec = match_spec()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P><A NAME="qlc_table"><!-- Empty --></A>Returns a QLC (Query List
Comprehension) query handle. The module <CODE>qlc</CODE> implements
a query language aimed mainly at Mnesia but ETS tables, Dets
tables, and lists are also recognized by QLC as sources of
data. Calling <CODE>ets:table/1,2</CODE> is the means to make the
ETS table <CODE>Tab</CODE> usable to QLC.
<P>When there are only simple restrictions on the key position
QLC uses <CODE>ets:lookup/2</CODE> to look up the keys, but when
that is not possible the whole table is traversed. The
option <CODE>traverse</CODE> determines how this is done:
<P>
<UL>
<LI>
<CODE>first_next</CODE>. The table is traversed one key at
a time by calling <CODE>ets:first/1</CODE> and
<CODE>ets:next/2</CODE>.<BR>
</LI>
<LI>
<CODE>last_prev</CODE>. The table is traversed one key at
a time by calling <CODE>ets:last/1</CODE> and
<CODE>ets:prev/2</CODE>.<BR>
</LI>
<LI>
<CODE>select</CODE>. The table is traversed by calling
<CODE>ets:select/3</CODE> and <CODE>ets:select/1</CODE>. The option
<CODE>n_objects</CODE> determines the number of objects
returned (the third argument of <CODE>select/3</CODE>); the
default is to return <CODE>100</CODE> objects at a time. The
<A HREF="#match_spec">match_spec</A> (the
second argument of <CODE>select/3</CODE>) is assembled by QLC:
simple filters are translated into equivalent match_specs
while more complicated filters have to be applied to all
objects returned by <CODE>select/3</CODE> given a match_spec
that matches all objects.<BR>
</LI>
<LI>
<CODE>{select, MatchSpec}</CODE>. As for <CODE>select</CODE>
the table is traversed by calling <CODE>ets:select/3</CODE> and
<CODE>ets:select/1</CODE>. The difference is that the
match_spec is explicitly given. This is how to state
match_specs that cannot easily be expressed within the
syntax provided by QLC.<BR>
</LI>
</UL>
<P>The following example uses an explicit match_spec to
traverse the table:
<PRE>
9> <STRONG>ets:insert(Tab = ets:new(t, []), [{1,a},{2,b},{3,c},{4,d}]),</STRONG>
<STRONG>MS = ets:fun2ms(fun({X,Y}) when (X > 1) or (X < 5) -> {Y} end),</STRONG>
<STRONG>QH1 = ets:table(Tab, [{traverse, {select, MS}}]).</STRONG>
</PRE>
<P>An example with implicit match_spec:
<PRE>
10> <STRONG>QH2 = qlc:q([{Y} || {X,Y} <- ets:table(Tab), (X > 1) or (X < 5)]).</STRONG>
</PRE>
<P>The latter example is in fact equivalent to the former which
can be verified using the function <CODE>qlc:info/1</CODE>:
<PRE>
11> <STRONG>qlc:info(QH1) =:= qlc:info(QH2).</STRONG>
true
</PRE>
<P><CODE>qlc:info/1</CODE> returns information about a query handle,
and in this case identical information is returned for the
two query handles.
</DIV>
<P><A NAME="test_ms/2"><STRONG><CODE>test_ms(Tuple, MatchSpec) -> {ok, Result} | {error, Errors}
</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tuple = tuple()</CODE></STRONG><BR>
<STRONG><CODE>MatchSpec = match_spec()</CODE></STRONG><BR>
<STRONG><CODE>Result = term()</CODE></STRONG><BR>
<STRONG><CODE>Errors = [{warning|error, string()}]
</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>This function is a utility to test a
<A HREF="#match_spec">match_spec</A> used in
calls to <CODE>ets:select/2</CODE>. The function both tests
<CODE>MatchSpec</CODE> for "syntactic" correctness and runs the
match_spec against the object <CODE>Tuple</CODE>. If the match_spec
contains errors, the tuple <CODE>{error, Errors}</CODE> is returned
where <CODE>Errors</CODE> is a list of natural language
descriptions of what was wrong with the match_spec. If the
match_spec is syntactically OK, the function returns
<CODE>{ok,Term}</CODE> where <CODE>Term</CODE> is what would have been
the result in a real <CODE>ets:select/2</CODE> call or <CODE>false</CODE>
if the match_spec does not match the object <CODE>Tuple</CODE>.
<P>This is a useful debugging and test tool, especially when
writing complicated <CODE>ets:select/2</CODE> calls.
</DIV>
<P><A NAME="to_dets/2"><STRONG><CODE>to_dets(Tab, DetsTab) -> Tab</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
<STRONG><CODE>DetsTab = atom()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>Fills an already created/opened Dets table with the objects
in the already opened ETS table named <CODE>Tab</CODE>. The Dets
table is emptied before the objects are inserted.
</DIV>
<P><A NAME="update_counter/6"><STRONG><CODE>update_counter(Tab, Key, {Pos,Incr,Threshold,SetValue}) ->
Result</CODE></STRONG></A><BR>
<A NAME="update_counter/4"><STRONG><CODE>update_counter(Tab, Key, {Pos,Incr}) -> Result</CODE></STRONG></A><BR>
<A NAME="update_counter/3"><STRONG><CODE>update_counter(Tab, Key, Incr) -> Result</CODE></STRONG></A><BR>
<DIV CLASS=REFBODY><P>Types:
<DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Tab = tid() | atom()</CODE></STRONG><BR>
<STRONG><CODE>Key = term()</CODE></STRONG><BR>
<STRONG><CODE>Pos = Incr = Threshold = SetValue = Result = int()</CODE></STRONG><BR>
</DIV>
</DIV>
<DIV CLASS=REFBODY>
<P>This function provides an efficient way to update a counter,
without the hassle of having to look up an object, update the
object by incrementing an element and insert the resulting
object into the table again. (The update is done atomically;
i.e. no process can access the ets table in the middle of the
operation.)
<P>It will destructively update the object with key <CODE>Key</CODE>
in the table <CODE>Tab</CODE> by adding <CODE>Incr</CODE> to the element
at the <CODE>Pos</CODE>:th position. The new counter value is
returned. If no position is specified, the element directly
following the key (<CODE><keypos>+1</CODE>) is updated.
<P>If a <CODE>Threshold</CODE> is specified, the counter will be
reset to the value <CODE>SetValue</CODE> if the following
conditions occur:
<P>
<UL>
<LI>
The <CODE>Incr</CODE> is not negative (<CODE>>= 0</CODE>) and the
result would be greater than (<CODE>></CODE>) <CODE>Threshold</CODE>
</LI>
<LI>
The <CODE>Incr</CODE> is negative (<CODE>< 0</CODE>) and the
result would be less than (<CODE><</CODE>)
<CODE>Threshold</CODE>
</LI>
</UL>
<P>The function will fail with reason <CODE>badarg</CODE> if:
<P>
<UL>
<LI>
the table is not of type <CODE>set</CODE> or
<CODE>ordered_set</CODE>,
</LI>
<LI>
no object with the right key exists,
</LI>
<LI>
the object has the wrong arity,
</LI>
<LI>
the element to update is not an integer,
</LI>
<LI>
the element to update is also the key, or,
</LI>
<LI>
any of <CODE>Pos</CODE>, <CODE>Incr</CODE>, <CODE>Threshold</CODE> or
<CODE>SetValue</CODE> is not an integer
</LI>
</UL>
</DIV>
<H3>AUTHORS</H3>
<DIV CLASS=REFBODY>
Claes Wikstrom, Tony Rogvall, Patrik Nyblom - support@erlang.ericsson.se<BR>
</DIV>
<CENTER>
<HR>
<SMALL>stdlib 1.14.2<BR>
Copyright © 1991-2006
<A HREF="http://www.erlang.se">Ericsson AB</A><BR>
</SMALL>
</CENTER>
</BODY>
</HTML>
|