File: qlc.html

package info (click to toggle)
erlang-doc-html 1%3A11.b.2-1
  • links: PTS
  • area: main
  • in suites: etch, etch-m68k
  • size: 23,284 kB
  • ctags: 10,724
  • sloc: erlang: 505; ansic: 323; makefile: 62; perl: 61; sh: 45
file content (1676 lines) | stat: -rw-r--r-- 58,793 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<!-- This document was generated using DocBuilder 3.3.3 -->
<HTML>
<HEAD>
  <TITLE>qlc</TITLE>
  <SCRIPT type="text/javascript" src="../../../../doc/erlresolvelinks.js">
</SCRIPT>
  <STYLE TYPE="text/css">
<!--
    .REFBODY     { margin-left: 13mm }
    .REFTYPES    { margin-left: 8mm }
-->
  </STYLE>
</HEAD>
<BODY BGCOLOR="#FFFFFF" TEXT="#000000" LINK="#0000FF" VLINK="#FF00FF"
      ALINK="#FF0000">
<!-- refpage -->
<CENTER>
<A HREF="http://www.erlang.se">
  <IMG BORDER=0 ALT="[Ericsson AB]" SRC="min_head.gif">
</A>
<H1>qlc</H1>
</CENTER>

<H3>MODULE</H3>
<DIV CLASS=REFBODY>
qlc
</DIV>

<H3>MODULE SUMMARY</H3>
<DIV CLASS=REFBODY>
Query Interface to Mnesia, ETS, Dets, etc
</DIV>

<H3>DESCRIPTION</H3>
<DIV CLASS=REFBODY>

<P>The <CODE>qlc</CODE> module provides a query interface to Mnesia, ETS,
Dets and other data structures that implement an iterator style
traversal of objects. 

</DIV>

<H3>Overview</H3>
<DIV CLASS=REFBODY>

<P>The <CODE>qlc</CODE> module implements a query interface to <STRONG>QLC
tables</STRONG>. Typical QLC tables are ETS, Dets, and Mnesia
tables. There is also support for user defined tables, see the
<A HREF="#implementing_a_qlc_table">Implementing a QLC
table</A> section. A <STRONG>query</STRONG> is stated using
<STRONG>Query List Comprehensions</STRONG> (QLCs). These are similar to
ordinary list comprehensions as described in the Erlang
Reference Manual and Programming Examples except that variables
introduced in patterns cannot be used in list expressions. The
answers to a query are determined by data in QLC tables that
fulfill the constraints expressed by the QLCs of the query.


<P>QLCs should not be confused with the language construct
<CODE>query ListComprehension end</CODE> used by Mnemosyne. The
<CODE>qlc</CODE> module recognizes the first argument of every call to
<CODE>qlc:q/1,2</CODE> as QLCs, and nothing else. The semantics are
very different: Mnemosyne uses ideas borrowed from Prolog while
the QLCs introduced in this module are all Erlang. In fact, in
the absence of optimizations and options such as <CODE>cache</CODE>
and <CODE>unique</CODE> (see below), every QLC free of QLC tables
evaluates to the same list of answers as the identical ordinary
list comprehension. It is the aim of this module to replace
Mnemosyne and to be more versatile by means of QLC tables.


<P>While ordinary list comprehensions evaluate to lists, calling
<A HREF="#q">qlc:q/1,2</A> returns a <STRONG>Query
Handle</STRONG>. To obtain all the answers to a query, <A HREF="#eval">qlc:eval/1,2</A> should be called with the
query handle as first argument. Query handles are essentially
functions created in the module calling <CODE>q/1,2</CODE>. As the
functions refer to the module's code, one should be careful not
to keep query handles too long if the module's code is to be
replaced. 
Code replacement is described in the <A HREF="javascript:erlhref('../../../../', 'doc/reference_manual', 'code.html');">Erlang Reference
Manual</A>. The list of answers can also be traversed in
chunks by use of a <STRONG>Query Cursor</STRONG>. Query cursors are
created by calling <A HREF="#cursor">qlc:cursor/1,2</A> with a query handle as
first argument. Query cursors are essentially Erlang processes.
One answer at a time is sent from the query cursor process to
the process that created the cursor.


</DIV>

<H3>Syntax</H3>
<DIV CLASS=REFBODY>

<P>Syntactically QLCs have the same parts as ordinary list
comprehensions:


<P>
<PRE>
[Expression || Qualifier1, Qualifier2, ...]
</PRE>

<P><CODE>Expression</CODE> (the <STRONG>template</STRONG>) is an arbitrary
Erlang expression. Qualifiers are either <STRONG>filters</STRONG> or
<STRONG>generators</STRONG>. Filters are Erlang expressions returning
<CODE>bool()</CODE>. Generators have the form
<CODE>Pattern&#60;-ListExpression</CODE>, where
<CODE>ListExpression</CODE> is an expression evaluating to a query
handle or a list. Query handles are returned from
<CODE>qlc:table/2</CODE>, <CODE>qlc:append/1,2</CODE>, <CODE>qlc:sort/1,2</CODE>,
<CODE>qlc:keysort/2,3</CODE>, <CODE>qlc:q/1,2</CODE>, and
<CODE>qlc:string_to_handle/1,2,3</CODE>.


</DIV>

<H3>Evaluation</H3>
<DIV CLASS=REFBODY>

<P>The evaluation of a query handle begins by the inspection of
options and the collection of information about tables. As a
result qualifiers are modified during the optimization phase.
Next all list expressions are evaluated. If a cursor has been
created evaluation takes place in the cursor process. For those
list expressions that are QLCs, the list expressions of the
QLCs' generators are evaluated as well. One has to be careful if
list expressions have side effects since the order in which list
expressions are evaluated is unspecified. Finally the answers
are found by evaluating the qualifiers from left to right,
backtracking when some filter returns <CODE>false</CODE>, or
collecting the template when all filters return <CODE>true</CODE>.


<P>Filters that do not return <CODE>bool()</CODE> but fail are handled
differently depending on their syntax: if the filter is a guard
it returns <CODE>false</CODE>, otherwise the query evaluation fails.
This behavior makes it possible for QLC to do some optimizations
without affecting the meaning of a query. For example, when some
position of a table is compared to one or more constants, only
the objects with matching values are candidates for further
evaluation. The other objects are guaranteed to make the filter
return <CODE>false</CODE>, but never fail. The (small) set of
candidate objects can often be found by looking up some key
values of the table or by traversing the table using a match
specification. It is necessary to place the guard filters
immediately after the table's generator, otherwise it could
happen that some table object that would make the query
evaluation fail is excluded by looking up a key or running a
match specification.


</DIV>

<H3>Join</H3>
<DIV CLASS=REFBODY>

<P>QLC supports fast join of two query handles. Fast join is
possible if some position (<CODE>P1</CODE>) of one query handler is
compared to or matched against some position (<CODE>P2</CODE>) of
another query handle. Two fast join methods have been
implemented:


<P>
<UL>

<LI>
Lookup join traverses all objects of one query handle and
finds objects of the other handle (a QLC table) such that the
values at <CODE>P1</CODE> and <CODE>P2</CODE> match. QLC does not create
any indices but looks up values using the key position and
the indexed positions of the QLC table.


</LI>


<LI>
Merge join sorts the objects of each query handle if
necessary and filters out objects where the values at
<CODE>P1</CODE> and <CODE>P2</CODE> do not compare equal. If there are
many objects with the same value of <CODE>P2</CODE> a temporary
file will be used for the equivalence classes.


</LI>


</UL>

<P>QLC warns at compile time if a query list comprehension
combines QLC handles in such a way that more than one join is
possible. In other words, there is no query planner that can
choose a good order between possible join operations. It is up
to the user to order the joins by introducing query handles.


<P>The join is to be expressed as a guard filter. The filter must
be placed immediately after the two joined generators, possibly
after guard filters that use variables from no other generators
but the two joined generators. QLC inspects the operands of
<CODE>=:=/2</CODE>, <CODE>==/2</CODE>, <CODE>is_record/2</CODE>, <CODE>element/2</CODE>,
and logical operators (<CODE>and/2</CODE>, <CODE>or/2</CODE>,
<CODE>andalso/2</CODE>, <CODE>orelse/2</CODE>, <CODE>xor/2</CODE>) when
determining which joins to consider.


</DIV>

<H3>Common options</H3>
<DIV CLASS=REFBODY>

<P>The following options are accepted by <CODE>cursor/2</CODE>,
<CODE>eval/2</CODE>, <CODE>fold/4</CODE>, and <CODE>info/2</CODE>:


<P>
<UL>

<LI>
<CODE>{cache_all, CacheAll}</CODE> where <CODE>CacheAll</CODE> is
equal to <CODE>ets</CODE> or <CODE>list</CODE> adds a
<CODE>{cache,CacheAll}</CODE> option to every list expression
of the query except tables and lists. Default is
<CODE>{cache_all,no}</CODE>. The option <CODE>cache_all</CODE> is
equivalent to <CODE>{cache_all,ets}</CODE>. 


</LI>


<LI>
<CODE>{max_list_size, MaxListSize}</CODE> <A NAME="max_list_size"><!-- Empty --></A> where <CODE>MaxListSize</CODE> is the size in
bytes of terms on the external format. If the accumulated size
of collected objects exceeds <CODE>MaxListSize</CODE> the objects
are written onto a temporary file. This option is used by the
<CODE>{cache,list}</CODE> option as well as by the merge join
method. Default is 512*1024 bytes.


</LI>


<LI>
<CODE>{tmpdir, TempDirectory}</CODE> sets the directory used by
merge join for temporary files and by the
<CODE>{cache,list} option. The option also overrides the
&#60;c&#62;tmpdir</CODE> option of <CODE>keysort/3</CODE> and <CODE>sort/2</CODE>.
The default value is <CODE>&#34;&#34;</CODE> which means that the directory
returned by <CODE>file:get_cwd()</CODE> is used.


</LI>


<LI>
<CODE>{unique_all, true}</CODE> adds a
<CODE>{unique,true}</CODE> option to every list expression of
the query. Default is <CODE>{unique_all,false}</CODE>. The
option <CODE>unique_all</CODE> is equivalent to
<CODE>{unique_all,true}</CODE>.


</LI>


</UL>

</DIV>

<H3>Common data types</H3>
<DIV CLASS=REFBODY>

<P>
<UL>

<LI>
<CODE>QueryCursor = {qlc_cursor, term()}</CODE>
<BR>

</LI>


<LI>
<CODE>QueryHandle = {qlc_handle, term()}</CODE>
<BR>

</LI>


<LI>
<CODE>QueryHandleOrList = QueryHandle | list()</CODE>
<BR>

</LI>


<LI>
<CODE>Answers = [Answer]</CODE>
<BR>

</LI>


<LI>
<CODE>Answer = term()</CODE>
<BR>

</LI>


<LI>
<CODE>AbstractExpression =</CODE>
                -parse trees for Erlang expressions, see the
<A HREF="javascript:erlhref('../../../../', 'erts', 'absform.html');">           abstract format</A> documentation in 
ERTS User's Guide-
<BR>

</LI>


<LI>
<CODE>MatchExpression =</CODE>
                -matchspecifications, 
                 see the <A HREF="javascript:erlhref('../../../../', 'erts', 'match_spec.html');"> match specification</A> documentation in the 
ERTS User's Guide and <A HREF="ms_transform.html">               ms_transform(3)</A>-
<BR>

</LI>


<LI>
<CODE>SpawnOptions = default | spawn_options()</CODE>
<BR>

</LI>


<LI>
<CODE>SortOptions = [SortOption] | SortOption</CODE>
<BR>

</LI>


<LI>
<CODE>SortOption = {compressed, bool()}
         | {no_files, NoFiles}
         | {order, Order}
         | {size, Size}
         | {tmpdir, TempDirectory}
         | {unique, bool()}</CODE>
-see <A HREF="file_sorter.html">file_sorter(3)
</A>-
<BR>

</LI>


<LI>
<CODE>Order = ascending | descending | OrderFun</CODE>
<BR>

</LI>


<LI>
<CODE>OrderFun = fun(Term, Term) -&#62; bool()</CODE>
<BR>

</LI>


<LI>
<CODE>TempDirectory = &#34;&#34; | filename()</CODE>
<BR>

</LI>


<LI>
<CODE>Size = int() &#62; 0</CODE>
<BR>

</LI>


<LI>
<CODE>NoFiles = int() &#62; 1</CODE>
<BR>

</LI>


<LI>
<CODE>KeyPos = int() &#62; 0 | [int() &#62; 0]</CODE>
<BR>

</LI>


<LI>
<CODE>MaxListSize = int() &#62;= 0</CODE>
<BR>

</LI>


<LI>
<CODE>bool() = true | false</CODE>
<BR>

</LI>


<LI>
<CODE>Cache = ets | list | no</CODE>
<BR>

</LI>


<LI>
<CODE>filename() =</CODE>
-see <A HREF="filename.html">filename(3)
</A>-
<BR>

</LI>


<LI>
<CODE>spawn_options() =</CODE>
-see <A HREF="javascript:erlhref('../../../../', 'kernel', 'erlang.html');"> erlang(3)</A>-
<BR>

</LI>


</UL>

</DIV>

<H3>Getting started</H3>
<DIV CLASS=REFBODY>

<P><A NAME="getting_started"><!-- Empty --></A>As already mentioned queries are
stated in the list comprehension syntax as described in the
<A HREF="javascript:erlhref('../../../../', 'doc/reference_manual', 'expressions.html');">Erlang
Reference Manual</A>. In the following some familiarity
with list comprehensions is assumed. There are examples in
<A HREF="javascript:erlhref('../../../../', 'doc/programming_examples', 'list_comprehensions.html');"> Programming Examples</A> that can get you started. It
should be stressed that list comprehensions do not add any
computational power to the language; anything that can be done
with list comprehensions can also be done without them. But they
add a syntax for expressing simple search problems which is
compact and clear once you get used to it.


<P>Many list comprehension expressions can be evaluated by the
<CODE>qlc</CODE> module. Exceptions are expressions such that
variables introduced in patterns (or filters) are used in some
generator later in the list comprehension. As an example
consider an implementation of lists:append(L): <CODE>[X || Y &#60;- L,
X &#60;- Y]</CODE>. Y is introduced in the first generator and used in
the second. The ordinary list comprehension is normally to be
preferred when there is a choice as to which to use. One
difference is that <CODE>qlc:eval/1,2</CODE> collects answers in a
list which is finally reversed, while list comprehensions
collect answers on the stack which is finally unwound.


<P>What the <CODE>qlc</CODE> module primarily adds to list
comprehensions is that data can be read from QLC tables in small
chunks. A QLC table is created by calling <CODE>qlc:table/2</CODE>.
Usually <CODE>qlc:table/2</CODE> is not called directly from the query
but via an interface function of some data structure. There are
a few examples of such functions in Erlang/OTP:
<CODE>mnesia:table/1,2</CODE>, <CODE>ets:table/1,2</CODE>, and
<CODE>dets:table/1,2</CODE>. For a given data structure there can be
several functions that create QLC tables, but common for all
these functions is that they return a query handle created by
<CODE>qlc:table/2</CODE>. Using the QLC tables provided by OTP is
probably sufficient in most cases, but for the more advanced
user the section <A HREF="#implementing_a_qlc_table">Implementing a QLC
table</A> describes the implementation of a function
calling <CODE>qlc:table/2</CODE>.


<P>Besides <CODE>qlc:table/2</CODE> there are other functions that
return query handles. They might not be used as often as tables,
but are useful from time to time. <CODE>qlc:append</CODE> traverses
objects from several tables or lists after each other. If, for
instance, you want to traverse all answers to a query QH and
then finish off by a term <CODE>{finished}</CODE>, you can do that by
calling <CODE>qlc:append(QH, [{finished}])</CODE>. <CODE>append</CODE> first
returns all objects of QH, then <CODE>{finished}</CODE>. If there is
one tuple <CODE>{finished}</CODE> among the answers to QH it will be
returned twice from <CODE>append</CODE>.


<P>As another example, consider concatenating the answers to two
queries QH1 and QH2 while removing all duplicates. The means to
accomplish this is to use the <CODE>unique</CODE> option:

<PRE>
qlc:q([X || X &#60;- qlc:append(QH1, QH2)], {unique, true})
</PRE>

<P>The cost is substantial: every returned answer will be stored
in an ETS table. Before returning an answer it is looked up in
the ETS table to check if it has already been returned. Without
the <CODE>unique</CODE> options all answers to QH1 would be returned
followed by all answers to QH2. The <CODE>unique</CODE> options keeps
the order between the remaining answers.


<P>If the order of the answers is not important there is the
alternative to sort the answers uniquely:

<PRE>
qlc:sort(qlc:q([X || X &#60;- qlc:append(QH1, QH2)], {unique, true})).
</PRE>

<P>This query also removes duplicates but the answers will be
sorted. If there are many answers temporary files will be used.
Note that in order to get the first unique answer all answers
have to be found and sorted.


<P>To return just a few answers cursors can be used. The following
code returns no more than five answers using an ETS table for
storing the unique answers:
<PRE>

C = qlc:cursor(qlc:q([X || X &#60;- qlc:append(QH1, QH2)],{unique,true})),
R = qlc:next_answers(C, 5),
ok = qlc:delete_cursor(C),
R.
</PRE>

<P>Query list comprehensions are convenient for stating
constraints on data from two or more tables. An example that
does a natural join on two query handles on position 2:
<PRE>

qlc:q([{X1,X2,X3,Y1} || 
          {X1,X2,X3} &#60;- QH1, 
          {Y1,Y2} &#60;- QH2, 
          X2 =:= Y2])
</PRE>

<P>QLC will evaluate this differently depending on the query
handles <CODE>QH1</CODE> and <CODE>QH2</CODE>. If, for example, <CODE>X2</CODE> is
matched against the key of a QLC table the lookup join method
will traverse the objects of <CODE>QH2</CODE> while looking up key
values in the table. On the other hand, if neither <CODE>X2</CODE> nor
<CODE>Y2</CODE> is matched against the key or an indexed position of a
QLC table, the merge join method will make sure that <CODE>QH1</CODE>
and <CODE>QH2</CODE> are both sorted on position 2 and next do the
join by traversing the objects one by one.


<P>The <CODE>join</CODE> option can be used to force QLC to use a
certain join method. For the rest of this section it is assumed
that the excessively slow join method called &#34;nested loop&#34; has
been chosen:
<PRE>

qlc:q([{X1,X2,X3,Y1} || 
          {X1,X2,X3} &#60;- QH1, 
          {Y1,Y2} &#60;- QH2, 
          X2 =:= Y2],
      {join, nested_loop})
</PRE>

<P>In this case the filter will be applied to every possible pair
of answers to QH1 and QH2, one at a time. If there are M answers
to QH1 and N answers to QH2 the filter will be run M*N times.


<P>If QH2 is a call to the function for <CODE>gb_trees</CODE> as defined
in the <A HREF="#implementing_a_qlc_table">Implementing
a QLC table</A> section, <CODE>gb_table:table/1</CODE>, the
iterator for the gb-tree will be initiated for each answer to
QH1 after which the objects of the gb-tree will be returned one
by one. This is probably the most efficient way of traversing
the table in that case since it takes minimal computational
power to get the following object. But if QH2 is not a table but a more
complicated QLC, it can be more efficient use some RAM memory
for collecting the answers in a cache, particularly if there are
only a few answers. It must then be assumed that evaluating QH2
has no side effects so that the meaning of the query does not
change if QH2 is evaluated only once. One way of caching the
answers is to evaluate QH2 first of all and substitute the list
of answers for QH2 in the query. Another way is to use the
<CODE>cache</CODE> option. It is stated like this:

<PRE>
QH2' = qlc:q([X || X &#60;- QH2], {cache, ets})
</PRE>

<P>or just

<PRE>
QH2' = qlc:q([X || X &#60;- QH2], cache)
</PRE>

<P>The effect of the <CODE>cache</CODE> option is that when the
generator QH2' is run the first time every answer is stored in
an ETS table. When next answer of QH1 is tried, answers to QH2'
are copied from the ETS table which is very fast. As for the
<CODE>unique</CODE> option the cost is a possibly substantial amount
of RAM memory. The <CODE>{cache,list}</CODE> option offers the
possibility to store the answers in a list on the process heap.
While this has the potential of being faster than ETS tables
since there is no need to copy answers from the table it can
often result in slower evaluation due to more garbage
collections of the process' heap as well as increased RAM memory
consumption due to bigger heaps. Another drawback with cache
lists is that if the size of the list exceeds a limit a
temporary file will be used. Reading the answers from a file is
very much slower than copying them from an ETS table. But if the
available RAM memory is scarce setting the <A HREF="#max_list_size">limit</A> to some low value is an
alternative.


<P>There is an option <CODE>cache_all</CODE> that can be set to
<CODE>ets</CODE> or <CODE>list</CODE> when evaluating a query. It adds a
<CODE>cache</CODE> or <CODE>{cache,list}</CODE> option to every list
expression except QLC tables and lists on all levels of the
query. This can be used for testing if caching would improve
efficiency at all. If the answer is yes further testing is
needed to pinpoint the generators that should be cached.


</DIV>

<H3>Implementing a QLC table</H3>
<DIV CLASS=REFBODY>

<P><A NAME="implementing_a_qlc_table"><!-- Empty --></A>As an example of how to
use the <A HREF="#q">qlc:table/2</A> function the
implementation of a QLC table for the <A HREF="gb_trees.html">gb_trees</A> module is given:
<PRE>
 
-module(gb_table).

-import(gb_trees, [iterator/1, lookup/2, next/1]).

-export([table/1]).

table(T) -&#62;
    TF = fun() -&#62; qlc_next(next(iterator(T))) end,
    InfoFun = fun(num_of_objects) -&#62; size(T);
                 (keypos) -&#62; 1;
                 (_) -&#62; undefined
              end,
    LookupFun = 
        fun(1, Ks) -&#62;
                lists:flatmap(fun(K) -&#62;
                                      case gb_trees:lookup(K, T) of
                                          {value, V} -&#62; [{K,V}];
                                          none -&#62; []
                                      end
                              end, Ks)
        end,
    FormatFun = 
        fun(all) -&#62;
                Vals = a_few(T),
                {gb_trees, from_orddict, [Vals]};
           ({lookup, 1, KeyValues}) -&#62;
                ValsS = io_lib:format(&#34;gb_trees:from_orddict(~w)&#34;, 
                                      [a_few(T)]),
                io_lib:format(&#34;lists:flatmap(fun(K) -&#62; &#34;
                              &#34;case gb_trees:lookup(K, ~s) of &#34;
                              &#34;{value, V} -&#62; [{K,V}];none -&#62; [] end &#34;
                              &#34;end, ~w)&#34;,
                              [ValsS, KeyValues])
        end,
    qlc:table(TF, [{info_fun, InfoFun}, {format_fun, FormatFun},
                   {lookup_fun, LookupFun}]).

qlc_next({X, V, S}) -&#62;
    [{X,V} | fun() -&#62; qlc_next(next(S)) end];
qlc_next(none) -&#62;
    [].

a_few(T) -&#62;
    a_few(iterator(T), 7).

a_few(_I, 0) -&#62;
    more;
a_few(I0, N) -&#62;
    case next(I0) of
        {X, V, I} -&#62;
            [{X,V} | a_few(I, N-1)];
        none -&#62;
            []
    end.
</PRE>

<P><CODE>TF</CODE> is the traversal function. The <CODE>qlc</CODE> module
requires that there is a way of traversing all objects of the
data structure; in <CODE>gb_trees</CODE> there is an iterator function
suitable for that purpose. Note that for each object returned a
new fun is created. As long as the list is not terminated by
<CODE>[]</CODE> it is assumed that the tail of the list is a nullary
function and that calling the function returns further objects
(and functions).


<P>The lookup function is optional. It is assumed that the lookup
function always finds values much faster than it would take to
traverse the table. The first argument is the position of the
key. Since <CODE>qlc_next</CODE> returns the objects as
{Key,Value} pairs the position is 1. Note that the lookup
function should return {Key,Value} pairs, just as the
traversal function does.


<P>The format function is also optional. It is called by
<CODE>qlc:info</CODE> to give feedback at runtime of how the query
will be evaluated. One should try to give as good feedback as
possible without showing too much details. In the example at
most 7 objects of the table are shown. The format function
handles two cases: <CODE>all</CODE> means that all objects of the
table will be traversed; <CODE>{lookup,1,KeyValues}</CODE>
means that the lookup function will be used for looking up key
values.


<P>Whether the whole table will be traversed or just some keys
looked up depends on how the query is stated. If the query has
the form

<PRE>
qlc:q([T || P &#60;- LE, F])
</PRE>

<P>and P is a tuple, the <CODE>qlc</CODE> module analyzes P and F in
compile time to find positions of the tuple P that are matched
or compared to constants. If such a position at runtime turns
out to be the key position, the lookup function can be used,
otherwise all objects of the table have to be traversed. It is
the info function <CODE>InfoFun</CODE> that returns the key position.
There can be indexed positions as well, also returned by the info
function. An index is an extra table that makes lookup on some
position fast. Mnesia maintains indices upon request, thereby
introducing so called secondary keys. The key is always
preferred before secondary keys regardless of the number of
constants to look up.


</DIV>

<H3>EXPORTS</H3>

<P><A NAME="append/1"><STRONG><CODE>append(QHL) -&#62; QH</CODE></STRONG></A><BR>

<DIV CLASS=REFBODY><P>Types:
  <DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>QHL = [QueryHandleOrList]</CODE></STRONG><BR>
<STRONG><CODE>QH = QueryHandle</CODE></STRONG><BR>

  </DIV>
</DIV>

<DIV CLASS=REFBODY>

<P>Returns a query handle. When evaluating the query handle
         <CODE>QH</CODE> all answers to the first query handle in
         <CODE>QHL</CODE> is returned followed by all answers to the rest
         of the query handles in <CODE>QHL</CODE>.


</DIV>

<P><A NAME="append/2"><STRONG><CODE>append(QH1, QH2) -&#62; QH3</CODE></STRONG></A><BR>

<DIV CLASS=REFBODY><P>Types:
  <DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>QH1 = QH2 = QueryHandleOrList</CODE></STRONG><BR>
<STRONG><CODE>QH3 = QueryHandle</CODE></STRONG><BR>

  </DIV>
</DIV>

<DIV CLASS=REFBODY>

<P>Returns a query handle. When evaluating the query handle
         <CODE>QH3</CODE> all answers to <CODE>QH1</CODE> are returned followed
         by all answers to <CODE>QH2</CODE>.


<P><CODE>append(QH1,QH2)</CODE> is equivalent to
<CODE>append([QH1,QH2])</CODE>.


</DIV>

<P><A NAME="cursor/2"><STRONG><CODE>cursor(QueryHandleOrList [, Options]) -&#62; QueryCursor</CODE></STRONG></A><BR>

<DIV CLASS=REFBODY><P>Types:
  <DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Options = [Option] | Option</CODE></STRONG><BR>
<STRONG><CODE>Option = {cache_all, Cache} | cache_all 
         | {max_list_size, MaxListSize}
| {spawn_options, SpawnOptions} 
                 | {tmpdir, TempDirectory}
| {unique_all, bool()} | unique_all</CODE></STRONG><BR>

  </DIV>
</DIV>

<DIV CLASS=REFBODY>

<P><A NAME="cursor"><!-- Empty --></A>Creates a query cursor and makes the
calling process the owner of the cursor. The cursor is to be
used as argument to <CODE>next_answers/1,2</CODE> and (eventually)
<CODE>delete_cursor/1</CODE>. Calls <CODE>erlang:spawn_opt</CODE> to
spawn and link a process which will evaluate the query
handle. The value of the option <CODE>spawn_options</CODE> is used
as last argument when calling <CODE>spawn_opt</CODE>. The default
value is <CODE>[link]</CODE>.

        
<PRE>
1&#62; <STRONG>QH = qlc:q([{X,Y} || X &#60;- [a,b], Y &#60;- [1,2]]),</STRONG>
<STRONG>QC = qlc:cursor(QH),</STRONG>
<STRONG>qlc:next_answers(QC, 1).</STRONG>
[{a,1}]
2&#62; <STRONG>qlc:next_answers(QC, 1).</STRONG>
[{a,2}]
3&#62; <STRONG>qlc:next_answers(QC, all_remaining).</STRONG>
[{b,1},{b,2}]
4&#62; <STRONG>qlc:delete_cursor(QC).</STRONG>
ok
</PRE>

</DIV>

<P><A NAME="delete_cursor/1"><STRONG><CODE>delete_cursor(QueryCursor) -&#62; ok</CODE></STRONG></A><BR>

<DIV CLASS=REFBODY>

<P>Deletes a query cursor. Only the owner of the cursor can
delete the cursor.


</DIV>

<P><A NAME="eval/2"><STRONG><CODE>eval(QueryHandleOrList [, Options]) -&#62; Answers | Error</CODE></STRONG></A><BR>
<A NAME="e/2"><STRONG><CODE>e(QueryHandleOrList [, Options]) -&#62; Answers</CODE></STRONG></A><BR>

<DIV CLASS=REFBODY><P>Types:
  <DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Options = [Option] | Option</CODE></STRONG><BR>
<STRONG><CODE>Option = {cache_all, Cache} | cache_all 
         | {max_list_size, MaxListSize}
                 | {tmpdir, TempDirectory}
| {unique_all, bool()} | unique_all</CODE></STRONG><BR>
<STRONG><CODE>Error = {error, module(), Reason}</CODE></STRONG><BR>
<STRONG><CODE>Reason =-as returned by file_sorter(3)-</CODE></STRONG><BR>

  </DIV>
</DIV>

<DIV CLASS=REFBODY>

<P><A NAME="eval"><!-- Empty --></A>Evaluates a query handle in the calling
process and collects all answers in a list.

        
<PRE>
1&#62; <STRONG>QH = qlc:q([{X,Y} || X &#60;- [a,b], Y &#60;- [1,2]]),</STRONG>
<STRONG>qlc:eval(QH).</STRONG>
[{a,1},{a,2},{b,1},{b,2}]
</PRE>

</DIV>

<P><A NAME="fold/4"><STRONG><CODE>fold(Function, Acc0, QueryHandleOrList [, Options]) -&#62;
Acc1 | Error</CODE></STRONG></A><BR>

<DIV CLASS=REFBODY><P>Types:
  <DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Function = fun(Answer, AccIn) -&#62; AccOut</CODE></STRONG><BR>
<STRONG><CODE>Acc0 = Acc1 = AccIn = AccOut = term()</CODE></STRONG><BR>
<STRONG><CODE>Options = [Option] | Option</CODE></STRONG><BR>
<STRONG><CODE>Option = {cache_all, Cache} | cache_all 
         | {max_list_size, MaxListSize}
                 | {tmpdir, TempDirectory}
| {unique_all, bool()} | unique_all</CODE></STRONG><BR>
<STRONG><CODE>Error = {error, module(), Reason}</CODE></STRONG><BR>
<STRONG><CODE>Reason =-as returned by file_sorter(3)-</CODE></STRONG><BR>

  </DIV>
</DIV>

<DIV CLASS=REFBODY>

<P>Calls <CODE>Function</CODE> on successive answers to the query
handle together with an extra argument <CODE>AccIn</CODE>. The
query handle and the function are evaluated in the calling
process. <CODE>Function</CODE> must return a new accumulator which
is passed to the next call. <CODE>Acc0</CODE> is returned if there
are no answers to the query handle.

        
<PRE>
1&#62; <STRONG>QH = [1,2,3,4,5,6],</STRONG>
<STRONG>qlc:fold(fun(X, Sum) -&#62; X + Sum end, 0, QH).</STRONG>
21
</PRE>

</DIV>

<P><A NAME="format_error/1"><STRONG><CODE>format_error(Error) -&#62; Chars</CODE></STRONG></A><BR>

<DIV CLASS=REFBODY><P>Types:
  <DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Error = {error, module(), term()}</CODE></STRONG><BR>
<STRONG><CODE>Chars = [char() | Chars]</CODE></STRONG><BR>

  </DIV>
</DIV>

<DIV CLASS=REFBODY>

<P>Returns a descriptive string in English of an error tuple
         returned by some of the functions of the <CODE>qlc</CODE> module
         or the parse transform. This function is mainly used by the
         compiler invoking the parse transform.


</DIV>

<P><A NAME="info/2"><STRONG><CODE>info(QueryHandleOrList [, Options]) -&#62; Info</CODE></STRONG></A><BR>

<DIV CLASS=REFBODY><P>Types:
  <DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>Options = [Option] | Option</CODE></STRONG><BR>
<STRONG><CODE>Option = EvalOption | ReturnOption</CODE></STRONG><BR>
<STRONG><CODE>EvalOption = {cache_all, Cache} | cache_all 
         | {max_list_size, MaxListSize}
                 | {tmpdir, TempDirectory}
| {unique_all, bool()} | unique_all</CODE></STRONG><BR>
<STRONG><CODE>ReturnOption = {flat, bool()} 
| {format, Format}
| {n_elements, NElements}</CODE></STRONG><BR>
<STRONG><CODE>Format = abstract_code
| string</CODE></STRONG><BR>
<STRONG><CODE>NElements = infinity
| int() &#62; 0</CODE></STRONG><BR>
<STRONG><CODE>Info = AbstractExpression
| string()</CODE></STRONG><BR>

  </DIV>
</DIV>

<DIV CLASS=REFBODY>

<P>Returns information about a query handle. The information
         describes the simplifications and optimizations that are the
         results of preparing the query for evaluation. This function
         is probably useful mostly during debugging. 


<P>The information has the form of an Erlang expression where
         QLCs most likely occur. Depending on the format functions of
         mentioned QLC tables it may not be absolutely accurate.


<P>The default is to return a sequence of QLCs in a block, but
         if the option <CODE>{flat,false}</CODE> is given, one single
         QLC is returned. The default is to return a string, but if
         the option <CODE>{format,abstract_code}</CODE> is given,
         abstract code is returned instead. The default is to return
         all elements in lists, but if the
         <CODE>{n_elements,NElements}</CODE> option is given, only a
         limited number of elements are returned.

        
<PRE>
1&#62; <STRONG>QH = qlc:q([{X,Y} || X &#60;- [x,y], Y &#60;- [a,b]]),</STRONG>
<STRONG>io:format(&#34;~s~n&#34;, [qlc:info(QH, unique_all)]).</STRONG>
begin
    V1 = qlc:q([SQV || SQV &#60;- [x,y]], [{unique,true}]),
    V2 = qlc:q([SQV || SQV &#60;- [a,b]], [{unique,true}]),
    qlc:q([{X,Y} || X &#60;- V1, Y &#60;- V2], [{unique,true}])
end
</PRE>

<P>In this example two simple QLCs have been inserted just to
         hold the <CODE>{unique,true}</CODE> option.

        
<PRE>
1&#62; <STRONG>E1 = ets:new(e1, []),</STRONG>
<STRONG>E2 = ets:new(e2, []),</STRONG>
<STRONG>true = ets:insert(E1, [{1,a},{2,b}]),</STRONG>
<STRONG>true = ets:insert(E2, [{a,1},{b,2}]),</STRONG>
<STRONG>Q = qlc:q([{X,Z,W} ||</STRONG>
              <STRONG>{X, Z} &#60;- ets:table(E1),</STRONG>
              <STRONG>{W, Y} &#60;- ets:table(E2),</STRONG>
              <STRONG>X =:= Y]),</STRONG>
<STRONG>io:format(&#34;~s~n&#34;, [qlc:info(Q)]).</STRONG>
begin
    V1 = qlc:q([P0 || P0 = {W,Y} &#60;- ets:table(18)]),
    V2 =
        qlc:q([[G1|G2] ||
                   G2 &#60;- V1,
                   G1 &#60;- ets:table(17),
                   element(2, G1) =:= element(1, G2)],
              [{join,lookup}]),
    qlc:q([{X,Z,W} || [{X,Z}|{W,Y}] &#60;- V2, X =:= Y])
end
</PRE>

<P>In this example the query list comprehension <CODE>V2</CODE> has
         been inserted to show the joined generators and the join
         method chosen. A convention is used for lookup join: the
         first generator (<CODE>G2</CODE>) is the one traversed, the second
         one (<CODE>G1</CODE>) is the table where constants are looked up.


</DIV>

<P><A NAME="keysort/3"><STRONG><CODE>keysort(KeyPos, QH1 [, SortOptions]) -&#62; QH2</CODE></STRONG></A><BR>

<DIV CLASS=REFBODY><P>Types:
  <DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>QH1 = QueryHandleOrList</CODE></STRONG><BR>
<STRONG><CODE>QH2 = QueryHandle</CODE></STRONG><BR>

  </DIV>
</DIV>

<DIV CLASS=REFBODY>

<P>Returns a query handle. When evaluating the query handle
         <CODE>QH2</CODE> the answers to the query handle <CODE>QH1</CODE> are
         sorted by <A HREF="file_sorter.html">file_sorter:keysort/4</A>
         according to the options.
         

<P>The sorter will use temporary files only if <CODE>QH1</CODE> does
         not evaluate to a list and the size of the binary
         representation of the answers exceeds <CODE>Size</CODE> bytes,
         where <CODE>Size</CODE> is the value of the <CODE>size</CODE> option.


</DIV>

<P><A NAME="next_answers/2"><STRONG><CODE>next_answers(QueryCursor [, NumberOfAnswers]) -&#62; 
Answers | Error</CODE></STRONG></A><BR>

<DIV CLASS=REFBODY><P>Types:
  <DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>NumberOfAnswers = all_remaining | int() &#62; 0</CODE></STRONG><BR>
<STRONG><CODE>Error = {error, module(), Reason}</CODE></STRONG><BR>
<STRONG><CODE>Reason =-as returned by file_sorter(3)-</CODE></STRONG><BR>

  </DIV>
</DIV>

<DIV CLASS=REFBODY>

<P>Returns some or all of the remaining answers to a query cursor.
Only the owner of <CODE>Cursor</CODE> can retrieve answers.


<P>The optional argument <CODE>NumberOfAnswers</CODE>determines the
         maximum number of answers returned. The default value is
         <CODE>10</CODE>. If less than the requested number of answers is
         returned, subsequent calls to <CODE>next_answers</CODE> will
         return <CODE>[]</CODE>.


</DIV>

<P><A NAME="q/2"><STRONG><CODE>q(QueryListComprehension [, Options]) -&#62; QueryHandle</CODE></STRONG></A><BR>

<DIV CLASS=REFBODY><P>Types:
  <DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>QueryListComprehension =
-literal query list comprehension-</CODE></STRONG><BR>
<STRONG><CODE>Options = [Option] | Option</CODE></STRONG><BR>
<STRONG><CODE>Option = {max_lookup, MaxLookup}
| {cache, Cache} | cache 
                 | {join, Join}
| {lookup, Lookup}
| {unique, bool()} | unique</CODE></STRONG><BR>
<STRONG><CODE>MaxLookup = int() &#62;= 0 | infinity</CODE></STRONG><BR>
<STRONG><CODE>Join = any | lookup | merge | nested_loop</CODE></STRONG><BR>
<STRONG><CODE>Lookup = bool() | any</CODE></STRONG><BR>

  </DIV>
</DIV>

<DIV CLASS=REFBODY>

<P><A NAME="q"><!-- Empty --></A>Returns a query handle for a query list
comprehension. The query list comprehension must be the
first argument to <CODE>qlc:q/1,2</CODE> or it will be evaluated
as an ordinary list comprehension. It is also necessary to
add the line

<PRE>
        -include_lib(&#34;stdlib/include/qlc.hrl&#34;).
        
</PRE>

<P>to the source file. This causes a parse transform to
         substitute a fun for the query list comprehension. The
         (compiled) fun will be called when the query handle is
         evaluated.

        
<P>When calling <CODE>qlc:q/1,2</CODE> from the Erlang shell the
         parse transform is automatically called. When this happens
         the fun substituted for the query list comprehension is not
         compiled but will be evaluated by <CODE>erl_eval(3)</CODE>. This
         is also true when expressions are evaluated by means of
         <CODE>file:eval/1,2</CODE> or in the debugger.


<P>To be very explicit, this will not work:
<PRE>
...
A = [X || {X} &#60;- [{1},{2}]], 
QH = qlc:q(A),
...
</PRE>

<P>The variable <CODE>A</CODE> will be bound to the evaluated value
         of the list comprehension (<CODE>[1,2]</CODE>). The compiler
         complains with an error message (&#34;argument is not a query
         list comprehension&#34;); the shell process stops with a
         <CODE>badarg</CODE> reason.


<P>The <CODE>{cache,ets}</CODE> option can be used to cache
         the answers to a query list comprehension. The answers are
         stored in one ETS table for each cached query list
         comprehension. When a cached query list comprehension is
         evaluated again, answers are fetched from the table without
         any further computations. As a consequence, when all answers
         to a cached query list comprehension have been found, the
         ETS tables used for caching answers to the query list
         comprehension's qualifiers can be emptied. The option
         <CODE>cache</CODE> is equivalent to <CODE>{cache,ets}</CODE>.


<P>The <CODE>{cache,list}</CODE> option can be used to cache
         the answers to a query list comprehension just like
         <CODE>{cache,ets}</CODE>. The difference is that the answers
         are kept in a list (on the process heap). If the answers
         would occupy more than a certain amount of RAM memory a
         temporary file is used for storing the answers. The option
         <CODE>max_list_size</CODE> sets the limit in bytes and the temporary
         file is put on the directory set by the <CODE>tmpdir</CODE> option.


<P>The <CODE>cache</CODE> option has no effect if it is known that
         the query list comprehension will be evaluated at most once.
         This is always true for the top-most query list
         comprehension and also for the list expression of the first
         generator in a list of qualifiers. Note that in the presence
         of side effects in filters or callback functions the answers
         to query list comprehensions can be affected by the
         <CODE>cache</CODE> option.

        
<P>The <CODE>{unique,true}</CODE> option can be used to remove
duplicate answers to a query list comprehension. The unique
answers are stored in one ETS table for each query list
comprehension. The table is emptied every time it is known
that there are no more answers to the query list
comprehension. The option <CODE>unique</CODE> is equivalent to
<CODE>{unique,true}</CODE>. If the <CODE>unique</CODE> option is
combined with the <CODE>{cache,ets}</CODE> option, two ETS
tables are used, but the full answers are stored in one
table only. If the <CODE>unique</CODE> option is combined with the
<CODE>{cache,list}</CODE> option the answers are sorted
twice using <CODE>keysort/3</CODE>; once to remove duplicates, and
once to restore the order.

        
<P>The <CODE>cache</CODE> and <CODE>unique</CODE> options apply not only
         to the query list comprehension itself but also to the
         results of looking up constants, running match
         specifications, and joining handles. 

        
<PRE>
1&#62; <STRONG>Q = qlc:q([{A,X,Z,W} ||</STRONG>
                 <STRONG>A &#60;- [a,b,c],</STRONG>
                 <STRONG>{X,Z} &#60;- [{a,1},{b,4},{c,6}],</STRONG>
                 <STRONG>{W,Y} &#60;- [{2,a},{3,b},{4,c}],</STRONG>
                 <STRONG>X =:= Y],</STRONG>
             <STRONG>{cache, list}),</STRONG>
<STRONG>io:format(&#34;~s~n&#34;, [qlc:info(Q)]).</STRONG>
begin
    V1 =
        qlc:q([P0 ||
                   P0 = {X,Z} &#60;- qlc:keysort(1, [{a,1},{b,4},{c,6}], [])]),
    V2 =
        qlc:q([P0 ||
                   P0 = {W,Y} &#60;- qlc:keysort(2, [{2,a},{3,b},{4,c}], [])]),
    V3 =
        qlc:q([[G1|G2] ||
                   G1 &#60;- V1, G2 &#60;- V2, element(1, G1) == element(2, G2)],
              [{join,merge},{cache,list}]),
    qlc:q([{A,X,Z,W} || A &#60;- [a,b,c], [{X,Z}|{W,Y}] &#60;- V3, X =:= Y])
end
</PRE>

<P>In this example the cached results of the merge join are
         traversed for each value of <CODE>A</CODE>. Note that without the
         <CODE>cache</CODE> option the join would have been carried out
         three times, once for each value of <CODE>A</CODE>


<P><CODE>sort/1,2</CODE> and <CODE>keysort/2,3</CODE> can also be used for
         caching answers and for removing duplicates. When sorting
         answers are cached in a list, possibly stored on a temporary
         file, and no ETS tables are used.


<P>Sometimes (see <A HREF="#lookup_fun">qlc:table/2</A> below) traversal
         of tables can be done by looking up key values, which is
         assumed to be fast. Under certain (rare) circumstances it
         could happen that there are too many key values to look up.
         <A NAME="max_lookup"><!-- Empty --></A>The
         <CODE>{max_lookup,MaxLookup}</CODE> option can then be used
         to limit the number of lookups: if more than
         <CODE>MaxLookup</CODE> lookups would be required no lookups are
         done but the table traversed instead. The default value is
         <CODE>infinity</CODE> which means that there is no limit on the
         number of keys to look up.

        
<PRE>
1&#62; <STRONG>T = gb_trees:empty(),</STRONG>
<STRONG>QH = qlc:q([X || {{X,Y},_} &#60;- gb_table:table(T),</STRONG>
<STRONG>((X =:= 1) or (X =:= 2)),</STRONG>
<STRONG>((Y =:= a) or (Y =:= b) or (Y =:= c))]),</STRONG>
<STRONG>io:format(&#34;~s~n&#34;, [qlc:info(QH)]).</STRONG>
ets:match_spec_run(
       lists:flatmap(fun(K) -&#62;
                            case
                                gb_trees:lookup(K,
                                                gb_trees:from_orddict([]))
                            of
                                {value,V} -&#62;
                                    [{K,V}];
                                none -&#62;
                                    []
                            end
                     end,
                     [{1,a},{1,b},{1,c},{2,a},{2,b},{2,c}]),
       ets:match_spec_compile([{{{'$1','$2'},'_'},
                                [{'andalso',
                                  {'or',
                                   {'=:=','$1',1},
                                   {'=:=','$1',2}},
                                  {'or',
                                   {'or',
                                    {'=:=','$2',a},
                                    {'=:=','$2',b}},
                                   {'=:=','$2',c}}}],
                                ['$1']}]))
</PRE>

<P>In this example using the <CODE>gb_table</CODE> module from the
<A HREF="#implementing_a_qlc_table">Implementing a
QLC table</A> section there are six keys to look up:
<CODE>{1,a}</CODE>, <CODE>{1,b}</CODE>, <CODE>{1,c}</CODE>, <CODE>{2,a}</CODE>,
<CODE>{2,b}</CODE>, and <CODE>{2,c}</CODE>. The reason is that the two
elements of the key {X,Y} are matched separately.


<P>The <CODE>{lookup,true}</CODE> option can be used to ensure
         that QLC will look up constants in some QLC table. If there
         are more than one QLC table among the generators' list
         expressions, constants have to be looked up in at least one
         of the tables. The evaluation of the query fails if there
         are no constants to look up. This option is useful in
         situations when it would be unacceptable to traverse all
         objects in some table. Setting the <CODE>lookup</CODE> option to
         <CODE>false</CODE> ensures that no constants will be looked up
         (<CODE>{max_lookup,0}</CODE> has the same effect). The
         default value is <CODE>any</CODE> which means that constants will
         be looked up whenever possible.

        
<P>The <CODE>{join,Join}</CODE> option can be used to ensure
         that a certain join method will be used:
         <CODE>{join,lookup}</CODE> invokes the lookup join method;
         <CODE>{join,merge}</CODE> invokes the merge join method; and
         <CODE>{join,nested_loop}</CODE> invokes the method of
         matching every pair of objects from two handles. The last
         method is mostly very slow. The evaluation of the query
         fails if QLC cannot carry out the chosen join method. The
         default value is <CODE>any</CODE> which means that some fast join
         method will be used if possible.


</DIV>

<P><A NAME="sort/2"><STRONG><CODE>sort(QH1 [, SortOptions]) -&#62; QH2</CODE></STRONG></A><BR>

<DIV CLASS=REFBODY><P>Types:
  <DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>QH1 = QueryHandleOrList</CODE></STRONG><BR>
<STRONG><CODE>QH2 = QueryHandle</CODE></STRONG><BR>

  </DIV>
</DIV>

<DIV CLASS=REFBODY>

<P>Returns a query handle. When evaluating the query handle
         <CODE>QH2</CODE> the answers to the query handle <CODE>QH1</CODE> are
         sorted by <A HREF="file_sorter.html">   file_sorter:sort/3</A> according to the options.
         

<P>The sorter will use temporary files only if <CODE>QH1</CODE> does
         not evaluate to a list and the size of the binary
         representation of the answers exceeds <CODE>Size</CODE> bytes,
         where <CODE>Size</CODE> is the value of the <CODE>size</CODE> option.


</DIV>

<P><A NAME="string_to_handle/3"><STRONG><CODE>string_to_handle(QueryString [, Options [, Bindings]]) -&#62; 
QueryHandle | Error</CODE></STRONG></A><BR>

<DIV CLASS=REFBODY><P>Types:
  <DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>QueryString = string()</CODE></STRONG><BR>
<STRONG><CODE>Options = [Option] | Option</CODE></STRONG><BR>
<STRONG><CODE>Option = {max_lookup, MaxLookup}
| {cache, Cache} | cache 
                 | {join, Join}
| {lookup, Lookup}
| {unique, bool()} | unique</CODE></STRONG><BR>
<STRONG><CODE>MaxLookup = int() &#62;= 0 | infinity</CODE></STRONG><BR>
<STRONG><CODE>Join = any | lookup | merge | nested_loop</CODE></STRONG><BR>
<STRONG><CODE>Lookup = bool() | any</CODE></STRONG><BR>
<STRONG><CODE>Bindings =-as returned by erl_eval:bindings/1-</CODE></STRONG><BR>
<STRONG><CODE>Error = {error, module(), Reason}</CODE></STRONG><BR>
<STRONG><CODE>Reason = -ErrorInfo as returned by
erl_scan:string/1 or erl_parse:parse_exprs/1-</CODE></STRONG><BR>

  </DIV>
</DIV>

<DIV CLASS=REFBODY>

<P>A string version of <CODE>qlc:q/1,2</CODE>. When the query handle
         is evaluated the fun created by the parse transform is
         interpreted by <CODE>erl_eval(3)</CODE>. The query string is to be
         one single query list comprehension terminated by a period.

        
<PRE>
1&#62; <STRONG>L = [1,2,3],</STRONG>
<STRONG>Bs = erl_eval:add_binding('L', L, erl_eval:new_bindings()),</STRONG>
<STRONG>QH = qlc:string_to_handle(&#34;[X+1 || X &#60;- L].&#34;, [], Bs),</STRONG>
<STRONG>qlc:eval(QH).</STRONG>
[2,3,4]
</PRE>

<P>This function is probably useful mostly when called from
         outside of Erlang, for instance from a driver written in C.

</DIV>

<P><A NAME="table/2"><STRONG><CODE>table(TraverseFun, Options) -&#62; QueryHandle</CODE></STRONG></A><BR>

<DIV CLASS=REFBODY><P>Types:
  <DIV CLASS=REFTYPES>
<P>
<STRONG><CODE>TraverseFun = TraverseFun0 | TraverseFun1</CODE></STRONG><BR>
<STRONG><CODE>TraverseFun0 = fun() -&#62; TraverseResult</CODE></STRONG><BR>
<STRONG><CODE>TraverseFun1 = fun(MatchExpression) -&#62; TraverseResult</CODE></STRONG><BR>
<STRONG><CODE>TraverseResult = Objects | term()</CODE></STRONG><BR>
<STRONG><CODE>Objects = [] | [term() | ObjectList]</CODE></STRONG><BR>
<STRONG><CODE>ObjectList = TraverseFun0 | Objects</CODE></STRONG><BR>
<STRONG><CODE>Options = [Option] | Option</CODE></STRONG><BR>
<STRONG><CODE>Option = {format_fun, FormatFun}
| {info_fun, InfoFun}
                 | {lookup_fun, LookupFun}
                 | {parent_fun, ParentFun}
         | {post_fun, PostFun}
| {pre_fun, PreFun}</CODE></STRONG><BR>
<STRONG><CODE>FormatFun = undefined 
| fun(SelectedObjects) -&#62; FormatedTable</CODE></STRONG><BR>
<STRONG><CODE>SelectedObjects = all 
| {match_spec, MatchExpression}
| {lookup, {Position, Keys}}</CODE></STRONG><BR>
<STRONG><CODE>FormatedTable = {Mod, Fun, Args}
| AbstractExpression
| character_list()</CODE></STRONG><BR>
<STRONG><CODE>InfoFun = undefined 
| fun(InfoTag) -&#62; InfoValue</CODE></STRONG><BR>
<STRONG><CODE>InfoTag = indices
| is_unique_objects
| keypos
| num_of_objects</CODE></STRONG><BR>
<STRONG><CODE>InfoValue = undefined 
| term()</CODE></STRONG><BR>
<STRONG><CODE>LookupFun = undefined 
| fun(Position, Keys) -&#62; LookupResult</CODE></STRONG><BR>
<STRONG><CODE>LookupResult = [term()] | term()</CODE></STRONG><BR>
<STRONG><CODE>ParentFun = undefined 
| fun() -&#62; ParentFunValue</CODE></STRONG><BR>
<STRONG><CODE>PostFun = undefined 
| fun() -&#62; void()</CODE></STRONG><BR>
<STRONG><CODE>PreFun = undefined 
| fun([PreArg]) -&#62; void()</CODE></STRONG><BR>
<STRONG><CODE>PreArg = {parent_value, ParentFunValue} 
| {stop_fun, StopFun}</CODE></STRONG><BR>
<STRONG><CODE>ParentFunValue = undefined 
| term()</CODE></STRONG><BR>
<STRONG><CODE>StopFun = undefined 
| fun() -&#62; void()</CODE></STRONG><BR>
<STRONG><CODE>Position = int() &#62; 0</CODE></STRONG><BR>
<STRONG><CODE>Keys = [term()]</CODE></STRONG><BR>
<STRONG><CODE>Mod = Fun = atom()</CODE></STRONG><BR>
<STRONG><CODE>Args = [term()]</CODE></STRONG><BR>

  </DIV>
</DIV>

<DIV CLASS=REFBODY>

<P><A NAME="table"><!-- Empty --></A>Returns a query handle for a QLC table.
         In Erlang/OTP there is support for ETS, Dets and Mnesia
         tables, but it is also possible to turn many other data
         structures into QLC tables. The way to accomplish this is
         to let function(s) in the module implementing the data
         structure create a query handle by calling
         <CODE>qlc:table/2</CODE>. The different ways to traverse the
         table as well as properties of the table are handled by
         callback functions provided as options to
         <CODE>qlc:table/2</CODE>.

        
<P>The callback function <CODE>TraverseFun</CODE> is used for
         traversing the table. It is to return a list of objects
         terminated by either <CODE>[]</CODE> or a nullary fun to be used
         for traversing the not yet traversed objects of the table.
         Any other return value is immediately returned as value
         of the query evaluation.
         Unary <CODE>TraverseFun</CODE>s are to accept a match
         specification as argument. The match specification is
         created by the parse transform by analyzing the pattern of
         the generator calling <CODE>qlc:table/2</CODE> and filters using
         variables introduced in the pattern. If the parse transform
         cannot find a match specification equivalent to the pattern
         and filters, <CODE>TraverseFun</CODE> will be called with a match
         specification returning every object. Modules that can
         utilize match specifications for optimized traversal of
         tables should call <CODE>qlc:table/2</CODE> with a unary
         <CODE>TraverseFun</CODE> while other modules can provide a
         nullary <CODE>TraverseFun</CODE>. <CODE>ets:table/2</CODE> is an
         example of the former; <CODE>gb_table:table/1</CODE> in the
         <A HREF="#implementing_a_qlc_table">Implementing a
         QLC table</A> section is an example of the latter.

        
<P><CODE>PreFun</CODE> is a unary callback function that is called
once before the table is read for the first time. If the
call fails, the query evaluation fails. Similarly, the
nullary callback function <CODE>PostFun</CODE> is called once
after the table was last read. The return value, which is
caught, is ignored. If <CODE>PreFun</CODE> has been called for a
table, <CODE>PostFun</CODE> is guaranteed to be called for that
table, even if the evaluation of the query fails for some
reason. The order in which pre (post) functions for different
tables are evaluated is not specified. Other table access
than reading, such as calling <CODE>InfoFun</CODE>, is assumed to
be OK at any time. The argument <CODE>PreArgs</CODE> is a list of
tagged values. Currently there are two tags,
<CODE>parent_value</CODE> and <CODE>stop_fun</CODE>, used by Mnesia for
managing transactions. The value of <CODE>parent_value</CODE> is
the value returned by <CODE>ParentFun</CODE>, or <CODE>undefined</CODE>
if there is no <CODE>ParentFun</CODE>. <CODE>ParentFun</CODE> is called
once just before the call of <CODE>PreFun</CODE> in the context
of the process calling <CODE>eval</CODE>, <CODE>fold</CODE>, or
<CODE>cursor</CODE>. The value of <CODE>stop_fun</CODE> is a nullary
fun that deletes the cursor if called from the parent, or
<CODE>undefined</CODE> if there is no cursor.

        
<P><A NAME="lookup_fun"><!-- Empty --></A>The binary callback function
         <CODE>LookupFun</CODE> is used for looking up objects in the
         table. The first argument <CODE>Position</CODE> is the key
         position or an indexed position and the second argument
         <CODE>Keys</CODE> is a sorted list of unique values. The return
         value is to be a list of all objects (tuples) such that the
         element at <CODE>Position</CODE> is a member of <CODE>Keys</CODE>. 
         Any other return value is immediately returned as value
         of the query evaluation.
         <CODE>LookupFun</CODE> is called instead of traversing the table
         if the parse transform at compile time can find out that
         the filters match and compare the element at
         <CODE>Position</CODE> in such a way that only <CODE>Keys</CODE> need to
         be looked up in order to find all potential answers. The
         key position is obtained by calling <CODE>InfoFun(keypos)</CODE>
         and the indexed positions by calling <CODE>InfoFun(indices)</CODE>.
         If the key position can be used for lookup it is always
         chosen, otherwise the indexed position requiring the least
         number of lookups is chosen. If there is a tie between two
         indexed positions the one occurring first in the list
         returned by <CODE>InfoFun</CODE> is chosen. Positions requiring
         more than <A HREF="#max_lookup">max_lookup</A> lookups are
         ignored.


<P>The unary callback function <CODE>InfoFun</CODE> is to return
         information about the table. <CODE>undefined</CODE> should be
         returned if the value of some tag is unknown:

         
<P>
<UL>

<LI>
<CODE>indices</CODE>. Returns a list of indexed
         positions, a list of positive integers.


</LI>


<LI>
<CODE>is_unique_objects</CODE>. Returns <CODE>true</CODE> if
         the objects returned by <CODE>TraverseFun</CODE> are unique.

         
</LI>


<LI>
<CODE>keypos</CODE>. Returns the position of the table's
         key, a positive integer.

         
</LI>


<LI>
<CODE>is_sorted_key</CODE>. Returns <CODE>true</CODE> if
         the objects returned by <CODE>TraverseFun</CODE> are sorted
         on the key.

         
</LI>


<LI>
<CODE>num_of_objects</CODE>. Returns the number of
         objects in the table, a non-negative integer.

         
</LI>


</UL>

<P>The unary callback function <CODE>FormatFun</CODE> is used by
<CODE>qlc:info/1,2</CODE> for displaying the call that created
the table's query handle. The default value
<CODE>undefined</CODE> is displayed as a call to
<CODE>'$MOD':'$FUN'/0</CODE>, otherwise it is up to
<CODE>FormatFun</CODE> to present the selected objects in a
suitable way. If a character list is chosen for
presentation it must be an Erlang expression that can be
scanned and parsed (a trailing dot will be added by
<CODE>qlc:info</CODE> though). The argument to <CODE>FormatFun</CODE>
describes the optimizations done as a result of analyzing
the filter(s). The possible values are:


<P>
<UL>

<LI>
<CODE>{lookup, Position, Keys}</CODE>.
         <CODE>LookupFun</CODE> is used for looking up objects in the
         table.


</LI>


<LI>
<CODE>{match_spec, MatchExpression}</CODE>. No way of
         finding all possible answers by looking up keys was
         found, but the filters could be transformed into a
         match specification. All answers are found by calling
         <CODE>TraverseFun(MatchExpression)</CODE>.

         
</LI>


<LI>
<CODE>all</CODE>. No optimization was found. A match
         specification matching all objects will be used if
         <CODE>TraverseFun</CODE> is unary.

         
</LI>


</UL>

<P>See <A HREF="ets.html#qlc_table">ets(3)</A>,
<A HREF="dets.html#qlc_table">dets(3)</A> and
<A HREF="javascript:erlhref('../../../../', 'mnesia', 'mnesia.html#qlc_table');">mnesia(3)</A> 
         for the various options recognized by <CODE>table/1,2</CODE> in
respective module.


</DIV>

<H3>See Also</H3>
<DIV CLASS=REFBODY>

<P><A HREF="dets.html">dets(3)</A>,
<A HREF="javascript:erlhref('../../../../', 'doc/reference_manual', 'part_frame.html');"> Erlang Reference Manual</A>,
<A HREF="erl_eval.html">erl_eval(3)</A>,
<A HREF="javascript:erlhref('../../../../', 'kernel', 'erlang.html');">erlang(3)</A>, 
<A HREF="ets.html">ets(3)</A>,
<A HREF="javascript:erlhref('../../../../', 'kernel', 'file.html');">file(3)</A>, 
<A HREF="file_sorter.html">file_sorter(3)</A>,
<A HREF="javascript:erlhref('../../../../', 'mnemosyne', 'mnemosyne.html');">mnemosyne(3)</A>, 
<A HREF="javascript:erlhref('../../../../', 'mnesia', 'mnesia.html');">mnesia(3)</A>, 
<A HREF="javascript:erlhref('../../../../', 'doc/programming_examples', 'part_frame.html');"> Programming Examples</A>,
<A HREF="shell.html">shell(3)</A>

</DIV>

<H3>AUTHORS</H3>
<DIV CLASS=REFBODY>
Hans Bolinder - support@erlang.ericsson.se<BR>

</DIV>
<CENTER>
<HR>
<SMALL>stdlib 1.14.2<BR>
Copyright &copy; 1991-2006
<A HREF="http://www.erlang.se">Ericsson AB</A><BR>
</SMALL>
</CENTER>
</BODY>
</HTML>